
Lowrider to Flowrider

Vehicle Aerodynamics and Aeromodding

New Mexico

Supercomputing Challenge

Final Report

April 3, 2013

Team 53

Los Alamos High School

Team Members
Rachel Robey
Simon Redman

Teacher
Lee Goodwin

Project Mentors
Robert Robey
Jim Redman

1

Abstract
The goal of this project is to investigate the improvement of gas mileage by reducing the air drag on

vehicles. Rather than designing body-up, we focus on the improvement of existing cars. To that end, we

seek to create a set of tools to identify the parts of vehicles that are most advantageous to target with

aeromodding modifications and to quickly determine the impact of proposed modifications. We regard

this as a work in progress and have approached the problem from both a modeling perspective and an

experimental one. We currently have a means of export from a CAD program, a module to generate a

computational mesh for the given 2D polygon object, and an incompressible CFD model on a regular

grid. We have begun work on developing and implementing the cut-cell version of the CFD, but it has

not yet been completed. As such, we have not yet reached a stage where it is possible to produce relevant

results, but would like to validate it against experimental data if possible. We will be using an electric car

to test, as it is much easier to measure electrical power than then gasoline usage. All the instrumentation

is in place and has been tested but has not yet been used to collect data.

1 Introduction

Computer aerodynamic modeling is nothing new. The auto industry uses computer models of their cars
to help improve their aerodynamics. However, there are no aerodynamic models available to the average
consumer. Normally this would not be a problem, as most consumers do not need to know and rarely even
care how aerodynamic their car is. There are some people, though, who make aftermarket aerodynamic
improvements to their car, which is known as aeromodding. For these people, knowing how effective a
change is going to be without first having to put it on the car would be very helpful.

Rebuilding a new car to be more efficient is much more environmentally friendly than buying a new, more
efficient, car. According to Wired[8], a new second-generation Prius has already consumed the equivalent
energy cost of 1000 gallons of gasoline before it even reaches the road. Rebuilding avoids the costs of making
a new car, and it avoids the costs of having to dispose of the old car. In general, there are two main
possibilities for rebuilding a car.

!

Figure 1: The Aerocivic, an example of an extensive
aeromod (picture credit [9])

First, many people take an old car with a non-
working engine and convert it to a more efficient fuel
type, such as electric. Unfortunately, the downsides
of alternative fuels, such as low range and lack of
infrastructure, are usually more pronounced in af-
termarket conversions because often old cars were
not designed with efficiency in mind and the con-
verter will only put in exactly as many batteries as
he needs to keep costs down. Therefore, many peo-
ple who convert cars are also interested in the second
possibility for rebuilding.

If the car still runs, and the person simply wants
to improve its fuel efficiency, aeromodding is often
a good alternate course of action. Aeromodding
means taking the vehicle and making it more aero-
dynamic. The possibilities for aeromodding range
from putting on new, smoother hubcaps, to putting
a cover over the entire wheel well, to redesigning
the whole body of the car. Obviously, the more extensive the modification is, the greater the potential for
lowering the coefficient of drag on the vehicle.

The Aerocivic is a well-known success story in the aeromoddering community[9]. After applying many
popular techniques, such as adding a boat tail and moving the wing mirrors inside, the coefficient of drag
dropped from 0.34 to 0.17. The Aerocivic gets about 70 miles per gallon, two-thirds better gas mileage than
a stock Honda Civic. The Aerocivic demonstrates that aerodynamic modifications can have a significant
improvement on car gas mileage. It is important, therefore, to encourage these types of projects.

2

2 Problem Statement

While it is possible to test proposed car modifications by actually building them and applying them to the
car, using a modern computer to test a modification is much faster and less costly. Allowing aeromodders to
quickly tests many different ideas will allow them to come up with a more valuable solution and visualize the
results of their change. Our goal is to create a program which calculates the air drag of a modeled car and
allows the model to easily be changed to simulate proposed modifications. In order to validate our model, we
will compare the model’s results with the results we get from testing a real-world vehicle. Our test vehicle
is electric because it is very easy to measure the energy usage of an electric car.

3 Physical Model

Once we have a working model, it is important to be able to prove that it produces realistic results. To do
this, we will compare the results gained from the model with measurements taken from real-world tests.

3.1 Test Vehicle

Figure 2: An electric Suzuki Sidekick. This is the car we will use for real-world tests.

The test vehicle selected as the physical model is an aftermarket converted electric Suzuki Sidekick. The
Sidekick is a small, four-wheel drive SUV which is powered by a huge forklift motor connected to the original
transmission through the original clutch. The battery is 32 3.2 volt 10 amp-hour lithium Li-PO batteries
which provide an estimated range of about 30 miles.

3.2 Measuring Changes in Energy Use
There are two tests that could be used to determine the effectiveness of a modification. The first is called
the Rolldown Test, and is described on the Instructables page by iwilltry[5]. It involves getting the car up
to speed and measuring how long it takes to slow down while coasting on a flat road. To improve the data,
the test is usually done going both ways along the same piece of road, to accommodate for any road grade,
and the data from several runs is averaged to reduce error. This test is very popular because it doesn’t rely
on any special instrumentation being installed in the car and it is straight-forward to execute.

The second test gets data on the car’s efficiency by directly measuring the car’s energy usage. The test can
be repeated after a modification along the same or similar piece of road to get an idea of the effectiveness
of each modifications. This test is less popular because it requires some kind of measuring device to be
installed in the car. However, it gives data which can easily be used to show how well a modification worked
at a certain speed. In a gas car, the instrumentation is usually something which measures the amount of
gas leaving the gas tank, meaning that it has to be installed somewhere on the gas line. In an electric car,

3

the idea is the same. Some system must be put in place to measure how much energy is leaving the battery.
However, unlike gas cars, many electric cars already have a shunt, which is effectively a high-power, precisely
calibrated resistor, and an ammeter in place since it is helpful to know how much power is being used in
order to avoid damaging the battery cells.

Because of the advantage of being able to measure the energy usage at any speed and because our test
car is electric, we have decided to use the second test to collect data to compare with the model.

3.3 Conducting Tests

Figure 3: A differential op-amp circuit. The val-
ues of the resistors determine the magnitude of the
amplification (image credit [11]).

The electric Sidekick already has a shunt in the main
wire that comes from the battery to the motor. How-
ever, rather than use a meter and a person taking
readings every few seconds, we have decided to use
an Arduino with bluetooth capabilities to collect and
output the data. With this set up, we are able to take
running readings at practically any time interval. The
data is then output to a device reading the bluetooth
comm, such as an Android device or a laptop, which
logs the data for later viewing.

The Arduino is connected to the car’s main shunt
using a differential op-amp circuit, which is a circuit
used to amplify a voltage, to get the tiny voltage on the
shunt into a number readable by the Arduino. Once
we know the voltage on the shunt, we can calculate
the amperage and the power.

4 Computational Methodology

The model thus far consists of two general components: geometry and fluid flow. For the sake of project scale,
we have chosen to keep the computational fluid dynamics (CFD) model fairly simple in order to focus more
on the geometry aspect. The model is still a work in progress and several of the parts have been developed
as a separate modules that have not yet been integrated. We present the work thus far, an overview of how
it fits into the model as a whole, and some of the theory in as yet unimplemented parts of the model.

4.1 Geometry
4.1.1 Inputting Object with CAD Program

There are many existing programs to facilitate the design of geometrically complex objects. The first
step of the process of resolving an object in a computational model is to generate the necessary geometric
information. As far as streamlining and easing the process of inputting the geometric information, computer-
aided design (CAD) programs have become fairly popular and sophisticated.

We did some work with Google Sketch-Up, a free 3D-modeling program, as an existing option with an
easy-to-use interface. Only a limited amount of information would actually need to be exported for our use
and a generic file format was not necessary. This made using Sketch-Up’s ruby application programming
interface (API) an ideal choice[7]. Through an imported ruby script, the vertices and faces of an object
designed in Sketch-Up can be readily written to a file and retrieved in the next steps in the process.

This script has been successfully written and implemented, but is separate from the rest of the model
at this point. We are only working in two dimensions and while it is possible to design and export on a
plane, the development of the model has not progressed to the point that we are importing complex objects
or polygons. While it has not been used as such, we consider this to be a viable and very feasible way to
import the geometry of objects and will be an important step in later stages of the project.

4

4.1.2 Resolving Geometry on a Computational Mesh

The description of the object (in two dimensions, a polygon) as a set of vertices must be transformed into
usable geometric information in the computational model. We have chosen to resolve flow around the object
through a cut-cell method, which is described in more detail in Section 4.3. At this point, it is only relevant
insofar as the data that needs to be output.

Given the object of interest, a mesh is generated to be overlaid on it. Each cell should then be clipped
along the polygon edges. From these cut cells, a few geometric properties are required for the cut-cell
computational model. In particular.

• ↵

i,j

- the volume of the cut cell, relative to that of a regular cell

• �

i± 1
2 ,j

and �

i,j± 1
2

- the area of the interface with cells in each direction (left, right, bottom, top) relative
to that of a regular cell

These quantities will be used to make the adjustments to volumen and flux in the computational model.

Polygon Clipping In order to generate the clipped cells and find the relevant data to export, we turn to
graphic algorithms. Graphics tend to be strong when working with geometry and space and have already
developed algorithms for many of these operations.

Based on extreme coordinates (furthest left/right/down/up) a mesh of given cell size is overlaid on the
polygon describing the object in consideration. Thus arranged, each computational cell is regarded as a
polygon to be clipped along the edges of the object polygon. We implement a modified version of the
Sutherland/Hodgman algorithm[4].

The original algorithm, having been developed for graphics applications, presents the clipping of polygons
against planes of a viewport. Polygons within a volume or viewing plane are repeatedly clipped along the
various planes of the viewport to remove the parts that lie outside of view. Our application has required
some modifications as it requires clipping around a polygon rather than inside one. In addition to describing
the primary algorithm, we also address the alternate issues in that arose.

Figure 4: Example of polygon clipping applied to a cell: (a) the first point is ’visible’ and therefore output
(b) the line crosses the clipping plane and the intersection point is also output, while point P is not (c) both
points are on the ’invisible’ side of the plane and nothing is added (d) the end point is considered ’visible’
and added to the array (e) the segment does not intersect the plane and the final point is not included. The
collection of output points describe the cut cell.

The procedure for clipping a polygon against a single plane, such as an edge of the object polygon,
is described by Sutherland and Hodgman[4]. An ordered set of vertices describes each cell: P1, . . . , Pn

.
Excepting the initial vertex, each point is considered as the terminal end of an edge; that is, the edge defined
by the current vertex and the previously input one. The points must be tested for ’visibility’, meaning they
are on the side of the plane that is not being removed, while the edge must be tested for intersection with
the plane. The result is a new ordered set of vertices which describe the clipped polygon.

5

The initial vertex is tested for ’visibility’. If positive, and the cell appears on the retained side of the
plane, it is added as the first of the output vertices. Otherwise, the algorithm continues without doing
anything. The process continues with the rest of the vertices in order; each vertex P is considered with the
proceeding vertex S. If the line segment PS crosses the clipping plane, the intersection point is computed
and output. Then P itself is considered for ’visibility’ and a ’visible’ point is output. These output points
describe the clipped version of the polygon. Figure 4 illustrates this process as applied to a sample cell where
an edge of the object constitutes the clipping plane.

The mesh can then be completely clipped to the embedded object by successively clipping the cells along
each of the edges. Some additional fine-tuning adjustment must be made, however. When clipping a side,
the cells along the segment are singled out to be clipped through simple interpolation. To handle the case of
an edge landing mid-cell, the clipping planes must be modified into line segments. The test for intersection
treats the line as infinite and will clip beyond the edge of the object polygon. Therefore, an additional test
is added to check if computed intersection points lie within the range of the line segment. A further issue
arises when vertices are prematurely removed. In clipping one edge, a vertex within the object may be
removed which would otherwise generate an intersection point when the next edge was clipped. However,
since it has already been removed, the additional side is lost. We account for the problem by passing not
two but three vertices during a clip. Adding the next vertex effectively lets not only the current edge, but
also the following edge to be considered. Only the cells along the current edge are clipped, so this measure
affects primarily the cells about the corners of the object polygon. While the above modifications counter
the main problems that have arisen in our adaptation of the polygon clipping algorithm, some complications
still remain. The main failure we have seen is on sharp corners, in which a cell straddles the polygon and the
vertices on either side register as being ’visible’, causing that portion of the object to be overlooked. These
cases could be separately accounted for, but as the problem can be lessened through increased resolution
and as most car shapes have larger, more obtuse angles that are handled correctly, it does not significantly
affect our particular application.

Figure 5 shows visualizations of the clipped mesh about various embedded polygons. The truncation
of corners can be clearly seen on those with internal angles of 90� or less when they align with the cells.
The truncation at smaller resolution occurs further down the corner and would presumably have a smaller
impact. Other inconsistencies between the original polygon and clipped mesh still exist, but the overall
representation is fairly accurate.

Figure 5: Visualization of clipping applied to several different embedded polygons (written in OpenGL).
The first set shows the same shape at different resolutions and the top right shows more simple shapes. The
bottom row shows two different car-like shapes with and without the original polygon outline. Stretched
cells result from display proportions.

6

Figure 6: Illustration of Jordan Curve Theorem and crossings of polygon on a ray in the �y direction

Point-In-Polygon Test Rather than being determined solely by which side of a plane a point lies on,
’visibility’ in our application is determined by whether the point lies inside or outside the object polygon.
Points outside the object are relevant parts of the mesh, while those inside lie within the rigid object and
are removed. Point-in-polygon tests are common in graphics. The one used in our model is based on the
concept Jordan Curve Theorem and implemented with the help of an online description[10].

The Jordan Curve Theorem states that a polygon (or any closed body) divides the plane into two distinct
parts: an inside and an outside. Crossing any portion of the polygon alternates from one to the other (see
Figure 6).

Using this fact, an arbitrary ray can be drawn from any given test point and the number of crossings of
the ray counted. Since the infinitely extending ray extends far beyond the polygon, it ultimately reaches the
outside portion of the plane. Counting backwards, an even number of crossings indicates the test point lies
outside the polygon while an odd count signifies an inside point. For convenience, a simple downward ray is
used.

Vertices present a special case. The ray may be either just brushing the vertex and not crossing the
polygon or simply crossing the polygon at the vertex. A negligible nudge to either side addresses the issue.
A touched vertex will then be resolved into either no crossings or one crossing after another. An actual
crossing has an edge on either side from the perspective of the test point and a crossing will be counted.

The way in which the test is implemented enables points on the polygon boundary to be separately
identified. An additional argument is passed to the routine to designate the desired return value in such a
case, thereby allowing ’outside’ to be returned when determining ’visibility’ and ’inside’ when testing whether
cells are completely contained.

4.1.3 Relevant Equations

Here is a quick note as to some of the relevant equations used to implement the algorithm described above.
The method of determining crossings of the clipping plane and computing the intersection point utilizes

a convenient distance measure from end points to plane[4]. The segments need only be parallel and as
such, are measured parallel to the axis. Crossing of the plane (i.e. the end points lay on opposite sides of
the clipping plane) is easily distinguished by opposite-signed distance measures. Otherwise proportions and
similar triangles are applied to find the intersection point:

I = �P2 + (1� �)P1 � P1 + � (P2 � P1)

with endpoints P1 and P2 and � denoting the fraction of the line P1P2 before the intersection point.
With the distance measures P1R1 and P2R2, these conditions for the expression above are given as:

7

|P1R1|
|P2R2|

=
|P1I|
|P1I|

� =
|P1I|
|P1P2|

=
|P1R1|

|P1R1 + |P2R2||

Additionally, in the geometry export, the area must be determined from the polygon vertices. The area
of the polygon described by points (x1, y1) , · · · (xn

, y

n

) is given by

Area =

����
(x1y2 � y1x2) + (x2y3 � y2x3) + · · ·+ (x

n

y1 � y

n

x1)

2

����

There are limitations for self-intersecting polygons, but these should not appear in the clipped cells.

4.2 Fluid Dynamics
There are many sophisticated fluid dynamics models, however we take one of the most basic and straight-
forward schemes, the rationale being to ease the merging of the geometric side of the project and save
time. In the absence of shocks or other phenomena that cause significant compression, incompressible fluid
flow should adequately represent normal air about a car body. The regular-mesh incompressible CFD was
implemented as outlined by Harlow and Scannapieco[3] and is a staggered Eulerian model with cell-centered
interpolations

Figure 7: Variables of pressure P and
velocities u

i± 1
2 ,j

and v

i,j± 1
2

placed in
their respective locations on a stag-
gered mesh.

An incompressible model assumes constant density and no
changes in energy due to work, thereby reducing the number of fac-
tors that must be addressed. The main variables are pressure P

i,j

,
horizontal velocity u

i+ 1
2 ,j

, and vertical velocity v

i,j+ 1
2
. As implied

by their indices, the physical location of the stored values of these
variables on a staggered grid follows the graphical representation in
Figure 7.

The transport equation in two dimensions, which represents the
advective flow of mass, is shown below.

�⇢

�t

+
�⇢u

�x

+
�⇢v

�y

= 0 =) �u

�x

+
�v

�y

= 0

The density (⇢), may be dropped because is assumed to remain
constant. The next consideration is of momentum, which is solved for momentum cells staggered to lie
centered on locations where velocity is directly represented (see Figure 8). Considering and condensing the
flux over each interface of the momentum cell, the change in momentum due to advection assumes the term

Figure 8: Location of momentum cells on
staggered mesh

✓
�⇢u

�t

◆

adv

= ��⇢u

2

�x

� �⇢uv

�y

Lastly, pressure results from the combination of real pres-
sure and viscous pressure. Summed, they contribute the term

�p

�x

� ⇢⌫

✓
�

2
u

�x

2
+

�

2
u

�y

2

◆

with ⌫ as the kinematic viscosity.
The combination of these terms gives equations for the

change in momentum in the x direction and the similar equa-
tion for the y direction.

�u

�t

+
�u

2

�x

+
�uv

�y

= ��P

�x

+ ⌫

✓
�

2
u

�x

2
+

�

2
u

�y

2

◆

8

and

�v

�t

+
�uv

�x

+
�v

2

�y

= ��P

�x

� ⌫

✓
�

2
v

�x

2
+

�

2
v

�y

2

◆

In solving these equations, pressure is separated out from the other terms to be solved implicitly once
the advective and viscous terms have been found explicitly. Excluding contributions made by pressure, the
discretized versions of the updates are given as

ū

n+1
i+ 1

2 ,j
= u

n

i+ 1
2 ,j

� dt

"
u

2
i+1,j � u

2
i,j

dx

!
+

(uv)

i+ 1
2 ,j+

1
2
� (uv)

i+ 1
2 ,j�

1
2

dy

!

�⌫

✓
u

i+ 3
2 ,j

+ u

i� 1
2 ,j

� 2u
i+ 1

2 ,j

dx

2

◆
� ⌫

✓
u

i+ 1
2 ,j+1 + u

i+ 1
2 ,j�1

� 2u
i+ 1

2 ,j

dy

2

◆�

v̄

n+1
i,j+ 1

2
= v

n

i,j+ 1
2
� dt

"
(uv)

i+ 1
2 ,j+

1
2
� (uv)

i� 1
2 ,j+

1
2

dx

!
+

v

2
i,j+1 � v

2
i,j

dx

!

�⌫

✓
v

i+1,j+ 1
2
+ v

i+1,j+ 1
2
� 2v

i,j+ 1
2

dx

2

◆
� ⌫

✓
v

i,j+ 3
2
+ v

i,j� 1
2
� 2v

i,j+ 1
2

dy

2

◆�

Pressure can then be found by minimizing the overall change in mass

D

i,j

=
u

i� 1
2 ,j

� u

i+ 1
2 ,j

dx

+
v

i,j� 1
2
� v

i,j+ 1
2

dy

to zero with Newton’s Method.
With this regular-grid model, it is possible to model a limited variety objects in the flow. Whole interfaces

can be set to have no flow and an object described by the blocked off cells. Figure 9 shows the flow about
some rectangles on the boundary and in the middle of the domain.

Figure 9: Flow about rectilinear obstacles in a flow from the regular grid CFD and visualized as (left) vector
field and (right) streamlines.

9

4.3 Cut-Cell Modifications
We are using a cut-cell (also called embedded or immersed boundary) to deal with the non-rectilinear shapes
of the obstacle objects. The regular computational model must be adjusted to cope with partial cells. The
basic concept behind the method used is based primarily off of the paper Well-balanced compressible cut-cell

simulation of atmospheric flow by Klein, Bates, and Nikiforakis[4] with modifications made and derived from
the ideas presented in the paper.

The original intention was to integrate the fluid dynamics equations – developed on the regular grid
and described above – with the cut-cell methodology. However, this requires a clear description of flux
at cell boundaries that is muddled by the staggered grid. A cell-centered arrangement would likely ease
development. At this point, we present the cut-cell modifications in terms of cell interface fluxes, omitting
for the time being the application to the CFD equations.

The cut-cell discussion begins with the 1-dimensional version as the extension to two dimensions heavily
depends upon it.

4.3.1 One-Dimensional Cut-Cells

Figure 10: One-dimensional cut-cell problem; the partial cell lies to the right of the regular cell and has a
length of fraction ↵ to a normal cell length.

The evolvement of conserved state variables is described by a general form of a standard explicit conser-
vative update:

un+1
i

= un

i

� �t

�x

⇣
f
i+ 1

2
� f

i� 1
2

⌘

in which un
i

represents the vector of conserved state variables at time n in a cell of index i. f
i± 1

2
denotes the

numerical flux at either boundary of the cell. A major concern for cut-cell methods is maintaining stability
at a reasonable time step despite the relatively small fragments of cells that may be left after clipping. In one
dimension, a solution can be to weight the flux, thereby ’extending its influence’. A stabilized flux, referring
to Figure 10, is

f

⇤
i� 1

2
= f

B

+ ↵

i

⇣
f

i� 1
2
� f

B

⌘

4.3.2 Two-Dimensional Cut-Cells

The two-dimensional problem can be solved by reducing it into a combination of one-dimensional problems.
This is complicated by the fact that embedded boundaries do not necessarily conform to the coordinate
directions.

The two-dimensional cell is first decomposed into two parts: a shielded and an unshielded portion. The
first corresponds to the part blocked by the boundary in the current direction. The second acts like a
narrower, unblocked cell. The total flux collects the flux terms weighted according to the interface areas.

f2D
i� 1

2 ,j
=

1

�

i+ 1
2 ,j

h
�

i+ 1
2 ,j

funshielded
i� 1

2 ,j
+
⇣
�

i� 1
2 ,j

� �

i+ 1
2 ,j

⌘
fshielded
i+ 1

2 ,j

i

The unshielded flux is unaffected by the cut cell except for the area weighting applied in the above
equation. It is computed normally:

10

Figure 11: Decomposition of two-dimensional cut-cell

funshielded
i� 1

2 ,j
= f

i� 1
2 ,j

The shielded portion, however, is solved as a one-dimensional cut cell problem as presented above. The
effective length of the cell being taken as the average distance to the embedded boundary. The ratio seen in
the one-dimensional sample can be found from the relative volume and interfaces as

↵

shielded

i� 1
2 ,j

=
↵

i,j

� �

i+ 1
2 ,j

�

i� 1
2 ,j

� �

i+ 1
2 ,j

as given by Klein, et al. [6]. Here we show our own brief derivation of the expression.
The shielded volume is given by ↵

i,j

�
⇣
�

i+ 1
2 ,j

⌘
(1) where 1 denotes 100% of the normal top interface.

This volume is set equal to the sum of the ...

↵

i,j

� �

i+ 1
2 ,j

= x2

⇣
�

i� 1
2
� �

i+ 1
2

⌘
+

1

2
(x1 � x2)

⇣
�

i� 1
2
� �

i+ 1
2

⌘

x1 and x2 denote the ratios of the interfaces on the top and bottom of the cell.. the desired value is the
average of these ratios: 1

2 (x1 + x2).

Figure 12: Labeled cut cell for derivation of
ratio expression for finding average distance
to boundary

Solving:

↵

i,j

� �

i+ 1
2 ,j

�

i� 1
2
� �

i+ 1
2

= x2 +
1

2
(x1 � x2) =

1

2
(x1 + x2)

The last term needed for the total two-dimensional cut-
cell flux is found by applying the one-dimensional flux to the
shielded portion of the cell to give

fshielded
i� 1

2 ,j
= f⇤

i� 1
2 ,j

⇣
↵

shielded

i� 1
2 ,j

⌘

The generic idea of fluxes would need to be applied to the CFD
equations.

11

4.3.3 Extension to Pressure/other considerations

This paper accounts for the changes in calculations of normal boundary fluxes, i.e. the advective flux, which
has been altered accordingly. This is actually a lot easier than the advective and diffusive fluxes. Following
the derivation presented in Harlow[3] for an incompressible fluid on a regular grid, the necessary modifications
on the pressure terms are clearer.

As described in Section 4.2, the pressure terms are solved for implicitly. For an incompressible fluid, the
density ⇢ should remain constant and thus there is no overall change in mass in the cell: �mass

total

= 0.
The change in mass over each boundary is described by �mass = (Flux) (Area) (dt). The cut cell affects
the area, so the sum can be adjusted as

�mass

total

= ⇣
⇢u

i� 1
2 ,j

⌘⇣
�

i� 1
2 ,j

dy · dz
⌘
(dt)

�
⇣
⇢u

i+ 1
2 ,j

⌘⇣
�

i+ 1
2 ,j

dy · dz
⌘
(dt)

+
⇣
⇢v

i,j� 1
2

⌘⇣
�

i,j� 1
2
dx · dz

⌘
(dt)

�
⇣
⇢v

i,j+ 1
2

⌘⇣
�

i,j+ 1
2
dx · dz

⌘
(dt)

= 0

Factoring out the constant terms and dividing through by dx · dy:

⇢ · dz · dt

u

i� 1
2 ,j

�

i� 1
2 ,j

� u

i+ 1
2 ,j

�

i+ 1
2 ,j

dx

+
v

i,j� 1
2
�

i,j� 1
2
� v

i,j+ 1
2
�

i,j+ 1
2

dy

�
= 0

As the constants cannot be 0, the expression D

i,j

to be minimized to 0 is

D

i,j

=
u

i� 1
2 ,j

�

i� 1
2 ,j

� u

i+ 1
2 ,j

�

i+ 1
2 ,j

dx

+
v

i,j� 1
2
�

i,j� 1
2
� v

i,j+ 1
2
�

i,j+ 1
2

dy

Furthermore, to use Newton’s method in solving for pressure, the value for the next iteration is given as

P

new = P

old �
D

�
P

old

�
�
�D

�P

�
i,j

The value for the partial derivative can be found through the general expression for the velocity update

u

n+1
i+ 1

2 ,j
= ū

n+1
i+ 1

2 ,j
� dt

P

n+1
i+1,j � P

n+1
i,j

dx

!

v

n+1
i,j+ 1

2
= ū

n+1
i,j+ 1

2
� dt

P

n+1
i,j+1 � P

n+1
i,j

dy

!

and application of the chain rule. Applying the chain rule yields

✓
�D

�P

◆

i,j

=

�D

i,j

�u

i+ 1
2 ,j

!✓
�u

i+ 1
2 ,j

�P

i,j

◆
+

�D

i,j

�u

i� 1
2 ,j

!✓
�u

i� 1
2 ,j

�P

i,j

◆
+

�D

i,j

�v

i,j+ 1
2

!✓
�v

i,j+ 1
2

�P

i,j

◆
+

�D

i,j

�v

i,j� 1
2

!✓
�v

i,j� 1
2

�P

i,j

◆

=

✓
�

i� 1
2 ,j

dx

◆✓
dt

dx

◆
+

✓
�
�

i+ 1
2 ,j

dx

◆✓
� dt

dx

◆
+

✓
�

i,j� 1
2

dy

◆✓
dt

dy

◆
+

✓
�
�

i,j+ 1
2

dy

◆✓
� dt

dy

◆

= dt

�

i� 1
2 ,j

+ �

i+ 1
2 ,j

dx

2
+

�

i,j� 1
2
+ �

i,j+ 1
2

dy

2

�

This has not yet been implemented, but should adjust the influence of pressure on the change in velocity
to account for the embedded object and weight it properly as such.

12

5 Conclusion

This project has not reached a point at which it can readily be used to test car modifications nor be validated
through experimental data on this front. We have, however, outlined a feasible overall means to solving the
problem and have made progress in implementing some of the necessary steps.

Acknowledgements

We would like to thank our mentors, for helping us take the initial seed of an idea and turn it into a workable
project, as well as for supplying help, or directions for where to find help. We would also like to thank Mr.
Goodwin, for helping keep us organized.

References

[1] AN-31 Op Amp Circuit Collection. Tech. no. SNLA140A. Texas Instruments, May 2004. Web. 2 Apr.
2013.

[2] "Argonne GREET Model." Argonne GREET Model. Office of Energy Efficiency and Renewable Energy,
3 Sept. 2010. Web. 02 Apr. 2013.

[3] E. Scannapieco and F. H. Harlow. Introduction to Finite-Difference Methods for Numerical Fluid Dy-
namics. LA-12984(UC-700), 1995.

[4] Ivan Sutherland, Gary W. Hodgman: Reentrant Polygon Clipping. Communications of the ACM, vol.
17, pp. 32-41, 1974.

[5] Iwilltry. "Measure the Drag Coefficient of Your Car." Instructables.com. Instructables, 30 Aug. 2007.
Web. 09 Feb. 2013.

[6] R. Klein, K. R. Bates, N. Nikiforakis. (2009) Well-balanced compressible cut-cell simulation of atmo-
spheric flow. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 367:1907, pp. 4559-4575.

[7] SketchUp Class Index. <http://www.sketchup.com/intl/en/developer/docs/classes>

[8] Squatriglia, Chuck. "Go Green — Buy a Used Car. It’s Better Than a Hybrid." Wired.com. Wired, 19
May 2008. Web. 02 Apr. 2013.

[9] Turner, Mike. "Modifying a Honda Civic for Maximum MPG." Aerocivic. N.p., Oct. 2011. Web. 09 Feb.
2013.

[10] UC Irving. Computational Geometry Lecture Notes. 7 March 1996.
<http://www.ics.uci.edu/~eppstein/161/960307.html>

[11] University of Cambridge. Cut-cell/Embedded boundary techniques. Laboratory for Scientific Comput-
ing, 2012 <http://www.lsc.phy.cam.ac.uk/ research/cutcells.shtml>

13

A Code Listings

A.1 Ruby Script CSV Export

require ’ sketchup . rb ’
de f exportCSV ()

sep=" , "
ext="csv "
model = Sketchup . active_model
ss = model . selection
faces = []
ss . each { | e | faces << e i f e . c l a s s == Sketchup : : Face }
i f not faces

UI . messagebox ("No f a c e s s e l e c t e d . \ nExit ing . \ n")
return n i l

end

path=model . path
i f not path or path==""

path=Dir . pwd
title=" Unt i t l ed "

e l s e
path=File . dirname (path)
title=model . title

end#i f
ofile=File . join (path , title+’ _verts . ’+ext) . tr ("\\" , "/")
begin

file=File . new (ofile , "w")
r e s cue### trap i f open
UI . messagebox (" Ve r t i c e s F i l e : \ n\n "+ofile+"\n\nCannot be wr i t t en � i t ’ s probably -

a l ready open . \ nClose i t and try making i t again . . . \ n\ nExit ing . . . ")
re turn n i l

end

pts =[]
faces . each { | face |

verts = face . vertices
pts . clear
verts . each { | v | pts << v . position . x . to_s . gsub (/^~ / , ’ ’) . to_f . to_s+sep+v . position . y . to_s . -

gsub (/^~/ , ’ ’) . to_f . to_s+sep+v . position . z . to_s . gsub (/^~/ , ’ ’) . to_f . to_s }
file . puts (pts . length . to_s+"\n")
pts . each { | pt | file . puts (pt) }

}
file . close
#puts (f a c e s . l ength . to_s)+" v e r t i c e s wr i t t en to \n"+ o f i l e
begin

UI . openURL (" f i l e : / "+ofile)
r e s cue

end
end
###

A.2 Mesh Generation

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <OpenGL/ g l . h>
#inc lude <GLUT/ g lu t . h>

#de f i n e idx (i , j) ((i)⇤ y s i z e+(j))
#de f i n e MIN(x , y) (x < y ? x : y)
#de f i n e MAX(x , y) (x > y ? x : y)
#de f i n e AVG(a , b) (((a)+(b)) / 2 .)
#de f i n e EPS 1 .0 e�6

#de f i n e INSIDE 1
#de f i n e OUTSIDE 0

in t window , height = 600 , width = 600 ;

typede f s t r u c t {
f l o a t x , y ;

14

} POINT ;
typede f s t r u c t {

i n t nverts ;
POINT ⇤ vertices ;

} POLYGON ;

f l o a t left , right , bottom , top ; //bounds o f over lay g r id
f l o a t dx = 0 .5 , dy = 0 .5 , dz = 1 . 0 ;
i n t ncells , xsize , ysize ;
POLYGON ⇤ grid ;
POLYGON poly ;

/⇤⇤⇤
⇤ I n i t i a l i z a t i o n r ou t i n e s
⇤⇤⇤/

void importPolygon (char⇤ file_name) {
FILE⇤ file = fopen (file_name , " r ") ;
i f (file == NULL) {

printf ("Error opening f i l e \n") ;
exit (0) ;

}
char str [8 0] ;
i n t i ;

/⇤ Parse 2D coo rd ina t e s ⇤/
fgets (str , 80 , file) ;
sscanf (str , "%d" , &poly . nverts) ;
poly . vertices = malloc (poly . nverts ⇤ s i z e o f (POINT)) ;

i = 0 ;
whi le (fgets (str , 80 , file) != NULL && i < poly . nverts) {

sscanf (str , "%f , %f " , &poly . vertices [i] . x , &poly . vertices [i] . y) ;
i++;

}
fclose (file) ;

}
void genGrid () {

i n t v ;
f l o a t xmax = poly . vertices [0] . x ,

xmin = poly . vertices [0] . x ,
ymax = poly . vertices [0] . y ,
ymin = poly . vertices [0] . y ;

f o r (v = 1 ; v < poly . nverts ; v++) {
i f (poly . vertices [v] . x < xmin) xmin = poly . vertices [v] . x ;
i f (poly . vertices [v] . x > xmax) xmax = poly . vertices [v] . x ;
i f (poly . vertices [v] . y < ymin) ymin = poly . vertices [v] . y ;
i f (poly . vertices [v] . y > ymax) ymax = poly . vertices [v] . y ;

}
left = xmin�dx ;
right = ((i n t) ((xmax�xmin) /dx+0.5) + 2)⇤dx + xmin ;
bottom = ymin � dy ;
top = ((i n t) ((ymax�ymin) /dy+0.5) + 2)⇤dy + ymin ;

xsize = (right�left) /dx ;
ysize = (top�bottom) /dy ;
ncells = xsize ⇤ ysize ;

grid = malloc (ncells ⇤ s i z e o f (POLYGON)) ;
i n t i , j ;

f o r (i = 0 ; i < xsize ; i++) {
f o r (j = 0 ; j < ysize ; j++) {

grid [idx (i , j)] . nverts = 4 ;
grid [idx (i , j)] . vertices = malloc (4⇤ s i z e o f (POINT)) ;
grid [idx (i , j)] . vertices [0] . x = i⇤dx + left ;
grid [idx (i , j)] . vertices [0] . y = j⇤dy + bottom ;
grid [idx (i , j)] . vertices [1] . x = (i+1)⇤dx + left ;
grid [idx (i , j)] . vertices [1] . y = j⇤dy + bottom ;
grid [idx (i , j)] . vertices [2] . x = (i+1)⇤dx + left ;
grid [idx (i , j)] . vertices [2] . y = (j+1)⇤dy + bottom ;
grid [idx (i , j)] . vertices [3] . x = i⇤dx + left ;
grid [idx (i , j)] . vertices [3] . y = (j+1)⇤dy + bottom ;

}
}

}
/⇤⇤⇤
⇤ Cl ipping u t i l i t y r ou t i n e s
⇤⇤⇤/

i n t sameSign (f l o a t x , f l o a t y) {

15

re turn ((x⇤y) >= 0 .) ;
}
f l o a t getLineXcoor (POINT a , POINT b , f l o a t ycoor) {

i f (a . x == b . x) re turn a . x ; // check v e r t i c a l l i n e

double slope = (a . y � b . y) /(a . x � b . x) ;
double y_incpt = b . y � (b . x ⇤ slope) ;
r e turn (f l o a t) (ycoor�y_incpt) / slope ;

}
f l o a t getLineYcoor (POINT a , POINT b , f l o a t xcoor) {

i f (a . y == b . y) re turn a . y ;

double slope = (a . y � b . y) /(a . x � b . x) ;
double y_incpt = b . y � (b . x ⇤ slope) ;
r e turn (f l o a t) (slope ⇤ xcoor+y_incpt) ;

}
/⇤ Test to see i f the po int i s in the polygon , s e t on_boundary to de s i r ed return value f o r -

po in t s l y i ng on polygon edge ⇤/
i n t pnpoly (POINT ⇤ polygon , i n t n , POINT P , i n t on_boundary) {

i n t v , crossings = 0 ;
POINT ic , next , prev ;
f l o a t t , cy ;

f o r (v = 0 ; v < n ; v++) {
ic = polygon [v] ;
i f (v == n�1) next = polygon [0] ;
e l s e next = polygon [v+1] ;
i f (v == 0) prev = polygon [n�1] ;
e l s e prev = polygon [v�1] ;

i f ((ic . x < P . x && P . x < next . x) | | (ic . x > P . x && P . x > next . x)) {
t = (P . x � next . x) / (ic . x � next . x) ;
cy = t⇤ic . y + (1 . � t)⇤ next . y ;
i f (fabs (P . y � cy) < EPS) {

return on_boundary ;
}
e l s e i f (P . y > cy) crossings++;

}
i f (ic . x == P . x && ic . y <= P . y) {

i f (ic . y == P . y) re turn on_boundary ;
i f (next . x == P . x) {

i f ((ic . y <= P . y && P . y <= next . y) | | (ic . y >= P . y && P . y >= next . y)) {
re turn on_boundary ;

}
}
i f (prev . x == P . x) {

i f ((ic . y <= P . y && P . y <= prev . y) | | (ic . y >= P . y && P . y >= prev . y)) {
re turn on_boundary ;

}
}
e l s e i f (! sameSign (ic . x � next . x , ic . x � prev . x)) crossings++;

}
}
i f (crossings % 2 == 0) return OUTSIDE ;
e l s e re turn INSIDE ;

}
/⇤ Check i f po int P l i e s between the x and y va lues o f a and b ⇤/
i n t pnrange (POINT a , POINT b , POINT P) {

i f ((a . x <= P . x && P . x <= b . x) | | (a . x >= P . x && P . x >= b . x)) {
i f ((a . y <= P . y && P . y <= b . y) | | (a . y >= P . y && P . y >= b . y)) {

return 1 ;
}

}
return 0 ;

}
i n t lineIntersect (POINT ⇤ polygon , i n t n , POINT a , POINT b) {

i n t v ;
double x , y ;
POINT pa , pb ;
double m1 , m2 , b1 , b2 ; // v a r i a b l e s f o r 2 l i n e s

f o r (v = 0 ; v < n ; v++) {
pa = polygon [v] ;
i f (v == n�1) pb = polygon [0] ;
e l s e pb = polygon [v+1] ;

i f (pa . x == pb . x) {
y = getLineYcoor (a , b , pa . x) ;
i f ((y <= pa . y && y >= pb . y) | | (y >= pa . y && y <= pb . y))

16

re turn 1 ;
}
e l s e i f (pa . y == pa . y) {

x = getLineXcoor (a , b , pa . y) ;
i f ((x <= pa . x && x >= pb . x) | | (x >= pa . x && x <= pb . x))

re turn 1 ;
}
e l s e {

m1 = (pa . y � pb . y) /(pa . x � pb . x) ;
m2 = (a . y � b . y) /(a . x � b . x) ;
b1 = pa . y � (pa . x ⇤ m1) ;
b2 = a . y � (a . x ⇤ m2) ;

y = (m2 / (m2 � m1))⇤b1 � (m1/m2)⇤b2 ;

//compare x va lues to dec ide i f l i n e s i n t e r s e c t
i f (fabs ((y�b1) /m1 � (y�b2) /m2) < EPS) {

return 1 ;
}

}
}
return 0 ;

}
void purgeInner () {

i n t i , v ;
i n t allInside ;
f o r (i = 0 ; i < ncells ; i++) {

allInside = 1 ;
f o r (v = 0 ; v < grid [i] . nverts ; v++) {

i f (! pnpoly (poly . vertices , poly . nverts , grid [i] . vertices [v] , INSIDE))
allInside = 0 ;

}
i f (allInside) {

grid [i] . nverts = 0 ;
free (grid [i] . vertices) ;

}
}

}
void clip (POINT a , POINT b , POINT c) {

i n t i , j , v ;
POINT P , S , I ;
double dist1 , dist2 , part_line ;
POINT ⇤ clipverts ;
i n t ncverts ;

f o r (i = (in t) ((MIN (a . x , b . x)�left) /dx) ; i <= (in t) ((MAX (a . x , b . x)�left) /dx) ; i++) {
f o r (j = (in t) ((MIN (a . y , b . y)�bottom) /dy) ; j <= (in t) ((MAX (a . y , b . y)�bottom) /dy) ; j++) -

{

clipverts = malloc (20⇤ s i z e o f (POINT)) ;
ncverts = 0 ;

i f (lineIntersect (grid [idx (i , j)] . vertices , grid [idx (i , j)] . nverts , a , b)) {

i n t temp = idx (i , j) ;

f o r (v = 0 ; v < grid [idx (i , j)] . nverts ; v++) {

P = grid [idx (i , j)] . vertices [v] ;
i f (v == 0) S = P ;
e l s e {

i f (a . y == b . y) {
dist1 = P . y � a . y ;
dist2 = S . y � a . y ;

}
e l s e {

dist1 = P . x � getLineXcoor (a , b , P . y) ;
dist2 = S . x � getLineXcoor (a , b , S . y) ;

}
// check to see i f the endpoints are on d i f f e r e n t s i d e s o f c l i p p i n g -

plane
i f (! sameSign (dist1 , dist2)) {

part_line = fabs (dist2) /(fabs (dist1)+fabs (dist2)) ;
I . x = part_line ⇤(P . x � S . x) + S . x ;
I . y = part_line ⇤(P . y � S . y) + S . y ;
i f (pnrange (a , b , I)) {

clipverts [ncverts] = I ;
ncverts++;

}

17

}

i f (b . y == c . y) {
dist1 = P . y � b . y ;
dist2 = S . y � b . y ;

}
e l s e {

dist1 = P . x � getLineXcoor (b , c , P . y) ;
dist2 = S . x � getLineXcoor (b , c , S . y) ;

}
// check to see i f the endpoints are on d i f f e r e n t s i d e s o f c l i p p i n g -

plane
i f (! sameSign (dist1 , dist2)) {

part_line = fabs (dist2) /(fabs (dist1)+fabs (dist2)) ;
I . x = part_line ⇤(P . x � S . x) + S . x ;
I . y = part_line ⇤(P . y � S . y) + S . y ;
i f (pnrange (b , c , I)) {

clipverts [ncverts] = I ;
ncverts++;

}
}
S = P ; // update S f o r c on s i d e r a t i on o f po int

}
i f (! pnpoly (poly . vertices , poly . nverts , S , OUTSIDE)) {

clipverts [ncverts] = S ;
ncverts++;

}
}
i f (grid [idx (i , j)] . nverts > 0) {

S = grid [idx (i , j)] . vertices [grid [idx (i , j)] . nverts �1] ;
P = grid [idx (i , j)] . vertices [0] ;

i f (a . y == b . y) {
dist1 = P . y � a . y ;
dist2 = S . y � a . y ;

}
e l s e {

dist1 = P . x � getLineXcoor (a , b , P . y) ;
dist2 = S . x � getLineXcoor (a , b , S . y) ;

}

i f (! sameSign (dist1 , dist2)) {
part_line = fabs (dist2) /(fabs (dist1)+fabs (dist2)) ;
I . x = part_line ⇤(P . x � S . x) + S . x ;
I . y = part_line ⇤(P . y � S . y) + S . y ;
i f (pnrange (a , b , I)) {

clipverts [ncverts] = I ;
ncverts++;

}
}
i f (b . y == c . y) {

dist1 = P . y � b . y ;
dist2 = S . y � b . y ;

}
e l s e {

dist1 = P . x � getLineXcoor (b , c , P . y) ;
dist2 = S . x � getLineXcoor (b , c , S . y) ;

}

i f (! sameSign (dist1 , dist2)) {
part_line = fabs (dist2) /(fabs (dist1)+fabs (dist2)) ;
I . x = part_line ⇤(P . x � S . x) + S . x ;
I . y = part_line ⇤(P . y � S . y) + S . y ;
i f (pnrange (b , c , I)) {

clipverts [ncverts] = I ;
ncverts++;

}
}
grid [idx (i , j)] . nverts = ncverts ;
free (grid [idx (i , j)] . vertices) ;
grid [idx (i , j)] . vertices = clipverts ;

}
}

}
}

}
void clipPolygon () {

POINT next , curr , nxtnext ;
i n t v ;

18

f o r (v = 0 ; v < poly . nverts ; v++) {
curr = poly . vertices [v] ;
i f (v == poly . nverts � 1) next = poly . vertices [0] ;
e l s e next = poly . vertices [v+1] ;
i f (v == poly . nverts � 2) nxtnext = poly . vertices [0] ;
e l s e i f (v == poly . nverts � 1) nxtnext = poly . vertices [1] ;
e l s e nxtnext = poly . vertices [v+2] ;
clip (curr , next , nxtnext) ;

}
}
/⇤⇤⇤
⇤ Geometry r ou t i n e s
⇤⇤⇤/

/⇤ Return r e l a t i v e volume o f c e l l to unc l ipped one �� v e r t i c e s must be in order ⇤/
f l o a t relVolume (POLYGON p) {

double total = 0 ;
i n t i ;

i f (p . nverts < 1) return 0 . ;

/⇤ Gauss ’ s area formula or shoe l a c e method ⇤/
f o r (i = 0 ; i < p . nverts �1; i++) {

total += p . vertices [i] . x ⇤ p . vertices [i+1] . y ;
total �= p . vertices [i] . y ⇤ p . vertices [i+1] . x ;

}
total += p . vertices [p . nverts �1] . x ⇤ p . vertices [0] . y ;
total �= p . vertices [p . nverts �1] . y ⇤ p . vertices [0] . x ;

total = fabs (total) / 2 . ;
total = ((i n t) (total /(dx⇤dy) ⇤1000+0.5)) /1000 . ;

r e turn total ;

}
/⇤ r e tu rns r e l a t i v e c r o s s s e c t i o n area on c e l l i n t e r f a c e ⇤/
f l o a t relArea (POINT a , POINT b , f l o a t dist) {

double length = sqrt (pow (a . x�b . x , 2)+pow (a . y�b . y , 2)) ;
r e turn length / dist ;

}
/⇤⇤⇤
⇤ Grid f i l e output r ou t i n e s
⇤⇤⇤/

void writeFile (char ⇤ file_name) {

f l o a t vertInt [ysize] [xsize +1] ;
f l o a t horzInt [ysize +1] [xsize] ;
f l o a t relVol [ysize] [xsize] ;

i n t c , v , i , j ;
f l o a t tx , ty ;

/⇤ Determine r e l a t i v e volumes ⇤/
f o r (j = 0 ; j < ysize ; j++) {

f o r (i = 0 ; i < xsize ; i++) {
relVol [j] [i] = �1.;

}
}

f o r (c = 0 ; c < ncells ; c++) {
i f (grid [c] . nverts == 0) cont inue ;
tx = 0 . ;
ty = 0 . ;
f o r (v = 0 ; v < grid [c] . nverts ; v++) {

tx += grid [c] . vertices [v] . x�left ;
ty += grid [c] . vertices [v] . y�bottom ;

}
tx /= grid [c] . nverts ;
ty /= grid [c] . nverts ;

i = (in t) (tx/dx) ;
j = (in t) (ty/dy) ;

relVol [j] [i] = relVolume (grid [c]) ;

}

/⇤ Determine r e l a t i v e i n t e r f a c e area ⇤/
f o r (j = 0 ; j < ysize ; j++) {

f o r (i = 0 ; i <= xsize ; i++) {

19

vertInt [j] [i] = �1.;
}

}

f o r (j = 0 ; j <= ysize ; j++) {
f o r (i = 0 ; i < xsize ; i++) {

horzInt [j] [i] = �1.;
}

}

POINT curr , next ;

f o r (c = 0 ; c < ncells ; c++) {
i f (grid [c] . nverts == 0) cont inue ;
f o r (v = 0 ; v < grid [c] . nverts ; v++) {

curr = grid [c] . vertices [v] ;
i f (v == grid [c] . nverts�1) next = grid [c] . vertices [0] ;
e l s e next = grid [c] . vertices [v+1] ;

i f (curr . x == next . x) {
i = (in t) ((curr . x�left) /dx) ;
j = (in t) ((AVG (curr . y , next . y)�bottom) /dy) ;
vertInt [j] [i] = relArea (curr , next , dy) ;

}
i f (curr . y == next . y) {

j = (in t) ((curr . y�bottom) /dy) ;
i = (in t) ((AVG (curr . x , next . x)�left) /dx) ;
horzInt [j] [i] = relArea (curr , next , dy) ;

}
}

}

FILE ⇤ file = fopen (file_name , "w") ;
fprintf (file , "%d,%d\n" , xsize , ysize) ;
fprintf (file , "%f ,% f \n" , dx , dy) ;

f o r (j = 0 ; j < ysize ; j++) {
f o r (i = 0 ; i < xsize ; i++) {

fprintf (file , "%f \n" , relVol [j] [i]) ;
}

}
f o r (j = 0 ; j <= ysize ; j++) {

f o r (i = 0 ; i < xsize ; i++) {
fprintf (file , "%f \n" , horzInt [j] [i]) ;

}
}
f o r (j = 0 ; j < ysize ; j++) {

f o r (i = 0 ; i <= xsize ; i++) {
fprintf (file , "%f \n" , vertInt [j] [i]) ;

}
}

fclose (file) ;
}
/⇤⇤⇤
⇤ Display r ou t i n e s
⇤⇤⇤/

void displayInit () {
glClearColor (1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f) ;
glDisable (GL_DEPTH_TEST) ;
glLineWidth (2 .) ;

}
void drawGrid () {

glColor3f (0 . 0 f , 0 . 0 f , 0 . 0 f) ;
glPolygonMode (GL_FRONT_AND_BACK , GL_LINE) ;

i n t i , v ;
f o r (i = 0 ; i < ncells ; i++) {

glBegin (GL_POLYGON) ;
f o r (v = 0 ; v < grid [i] . nverts ; v++) {

glVertex2f (grid [i] . vertices [v] . x , grid [i] . vertices [v] . y) ;
}
glEnd () ;

}

}
void drawPoly () {

glColor3f (1 . 0 f , 0 . 0 f , 0 . 0 f) ;

20

i n t v ;
glBegin (GL_LINE_LOOP) ;
f o r (v = 0 ; v < poly . nverts ; v++) {

glVertex2f (poly . vertices [v] . x , poly . vertices [v] . y) ;
}
glEnd () ;

}
void display () {

displayInit () ;

glClear (GL_COLOR_BUFFER_BIT) ;

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
gluOrtho2D (left�dx , right+dx , bottom�dx , top+dx) ;
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

drawGrid () ;
drawPoly () ;

glutSwapBuffers () ;
}
/⇤⇤⇤
⇤ Main
⇤⇤⇤/

i n t main (i n t argc , char ⇤ argv []) {

importPolygon (" poly2 . txt ") ;
genGrid () ;

clipPolygon () ;
purgeInner () ;

writeFile ("/Users / r a che l /Documents/CFD/CFD/ gr id2 . txt ") ;

/⇤ Open d i sp l ay ⇤/
glutInit (&argc , argv) ;
glutInitDisplayMode (GLUT_DOUBLE) ;
glutInitWindowSize (width , height) ;
window = glutCreateWindow ("Polygon c l i pp i n g ") ;
displayInit () ;
glutDisplayFunc (display) ;

glutMainLoop () ;

r e turn 0 ;
}

A.3 Regular Grid CFD

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>

#de f i n e PRINT 0

#de f i n e ANU 0.06
#de f i n e DTEST 0.005
#de f i n e POS 0
#de f i n e NEG 1

#de f i n e AVG(a , b) (((a)+(b)) / 2 .)

#de f i n e p(i , j) p [(j) ⇤(x s i z e +2)+(i)]
#de f i n e D(i , j) D[(j) ⇤(x s i z e +2)+(i)]

#de f i n e u(i , j) u [(j) ⇤(x s i z e +1)+(i)]
#de f i n e v (i , j) v [(j) ⇤(x s i z e +2)+(i)]
#de f i n e u_bar (i , j) u_bar [(j) ⇤(x s i z e +1)+(i)]
#de f i n e v_bar (i , j) v_bar [(j) ⇤(x s i z e +2)+(i)]

#de f i n e p s i (i , j) p s i [(j) ⇤(x s i z e +2)+(i)]

double ⇤u_bar , ⇤ v_bar ;

21

double ⇤p , ⇤D ;
double ⇤u , ⇤v ;

double ⇤ psi ;

FILE ⇤ fpsi ;
FILE ⇤uFile , ⇤ vFile ;

i n t xsize , ysize ;

i n t setObj () {
i n t j ;
f o r (j = (in t) (ysize /3)+1; j <= ysize � (i n t) (ysize /3) ; j++) {

u (6 , j) = 0 . 0 ;
}
re turn 0 ;

}

i n t runCFD () {

xsize = 18 ; ysize = 12 ;
double dx = 1 . , dy = 1 . ; //cm

double dt = 0 . 0 01 ; // s
double ttime = 5.003 , time = 0 . , ptime = 5 . , pt = 0 . ;

i n t i , j ;
i n t iter ;
double beta = 1/(2⇤ dt ⇤(1/ dx/dx+1/dy/dy)) ;
double dmax ;
double insum , outsum ;

p = malloc ((xsize+2)⇤(ysize+2)⇤ s i z e o f (double)) ;
D = malloc ((xsize+2)⇤(ysize+2)⇤ s i z e o f (double)) ;

u = malloc ((xsize+1)⇤(ysize+2)⇤ s i z e o f (double)) ;
v = malloc ((xsize+2)⇤(ysize+1)⇤ s i z e o f (double)) ;
u_bar = malloc ((xsize+1)⇤(ysize+2)⇤ s i z e o f (double)) ;
v_bar = malloc ((xsize+2)⇤(ysize+1)⇤ s i z e o f (double)) ;

psi = malloc ((xsize+1)⇤(ysize+1)⇤ s i z e o f (double)) ;

/⇤ I n i t i a l i z a t i o n ⇤/

f o r (i = 0 ; i <= xsize ; i++) {
f o r (j = 1 ; j <= ysize ; j++) {

u (i , j) = 0 . 0 ;
}

}
f o r (i = 1 ; i <= xsize ; i++) {

f o r (j = 0 ; j <= ysize ; j++) {
v (i , j) = 0 . 0 ;

}
}
f o r (i = 0 ; i <= xsize+1; i++) {

f o r (j = 0 ; j <= ysize+1; j++) {
p (i , j) = 0 . 0 ;

}
}

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
⇤ I t e r a t i o n Loop
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f o r (time = 0 . ; time <= ttime ; time += dt) {
i f (PRINT) printf (" time %.3 l f \n" , time) ;

/⇤ Boundary Condit ions ⇤/
//sum input
insum = 0 . ; outsum = 0 . ;
f o r (j = 1 ; j <= ysize ; j++) {

// f r e e s l i p
v (0 , j�1) = v (1 , j�1) ;
v (xsize+1,j�1) = v (xsize , j�1) ;

u (0 , j) = 1 . 0 ;

insum += u (0 , j) ;
outsum += u (xsize �1,j) ;
i f (outsum == 0 .) outsum = (f l o a t) ysize ;

}

22

f o r (j = 1 ; j <= ysize ; j++) {
u (xsize , j) = u (xsize �1,j) ⇤(insum / outsum) ;

}
f o r (i = 1 ; i <= xsize ; i++) {

// f r e e s l i p
u (i�1 ,0) = u (i�1 ,1) ;
u (i�1, ysize+1) = u (i�1, ysize) ;

//no output on v e r t i c a l
v (i , 0) = 0 . 0 ;
v (i , ysize) = 0 . 0 ;

}
i f (PRINT) printf ("\tBoundary Condit ions Complete\n") ;
setObj () ;
i f (PRINT) printf ("\ tObject s e t \n") ;

/⇤ Ve l o c i t i e s �� c e l l centered ⇤/
f o r (j = 1 ; j <= ysize ; j++) {

f o r (i = 0 ; i <= xsize ; i++) {
u_bar (i , j) = u (i , j) � dt ⇤(

(pow (AVG (u (i , j) , u (i+1,j)) ,2)�pow (AVG (u (i�1,j) , u (i , j)) ,2)) /dx
+ (AVG (u (i , j) , u (i , j+1))⇤ AVG (v (i , j) , v (i+1,j))�AVG (u (i , j�1) , u (i , j))⇤ AVG (v -

(i , j�1) , v (i+1,j�1))) /dy
� ANU ⇤(u (i+1,j)+u (i�1,j)�2⇤u (i , j)) /(dx⇤dx)
� ANU ⇤(u (i , j+1)+u (i , j�1)�2⇤u (i , j)) /(dy⇤dy)) ;

}
}
f o r (j = 0 ; j <= ysize ; j++) {

f o r (i = 1 ; i <= xsize ; i++) {
v_bar (i , j) = v (i , j) � dt ⇤(

(pow (AVG (v (i , j) , v (i , j+1)) ,2)�pow (AVG (v (i , j�1) , v (i , j)) ,2)) /dy
+ (AVG (u (i , j) , u (i , j+1))⇤ AVG (v (i , j) , v (i+1,j))�AVG (u (i�1,j) , u (i�1,j+1))⇤ -

AVG (v (i�1,j) , v (i , j))) /dx
� ANU ⇤(v (i+1,j)+v (i�1,j)�2⇤v (i , j)) /(dx⇤dx)
� ANU ⇤(v (i , j+1)+v (i , j�1)�2⇤v (i , j)) /(dy⇤dy)) ;

}
}

i f (PRINT) printf ("\ tVe l o c i t y i n i t c a l c u l a t ed \n") ;

/⇤ Pressure ⇤/
iter = 0 ;
dmax = 0 . 0 ;
do {

f o r (j = 1 ; j <= ysize ; j++) {
f o r (i = 1 ; i <= xsize ; i++) {

D (i , j) = (u (i , j)�u (i�1,j)) /dx + (v (i , j)�v (i , j�1)) /dy ;
i f (fabs (D (i , j)) > dmax) dmax = fabs (D (i , j)) ;

}
}
f o r (j = 1 ; j <= ysize ; j++) {

f o r (i = 1 ; i <= xsize ; i++) {
p (i , j) = p (i , j) � (beta⇤D (i , j)) ;

}
}
f o r (j = 1 ; j <= ysize ; j++) {

f o r (i = 0 ; i < xsize ; i++) {
u (i , j) = u_bar (i , j) + (dt/dx) ⇤(p (i , j)�p (i+1,j)) ;

}
}
f o r (j = 0 ; j < ysize ; j++) {

f o r (i = 1 ; i <= xsize ; i++) {
v (i , j) = v_bar (i , j)+(dt/dy) ⇤(p (i , j)�p (i , j+1)) ;

}
}
/⇤ Boundary Condit ions ⇤/
//sum input
insum = 0 . ; outsum = 0 . ;
f o r (j = 1 ; j <= ysize ; j++) {

// f r e e s l i p
v (0 , j�1) = v (1 , j�1) ;
v (xsize+1,j�1) = v (xsize , j�1) ;

u (0 , j) = 1 . 0 ;

insum += u (0 , j) ;
outsum += u (xsize �1,j) ;
i f (outsum == 0 .) outsum = (f l o a t) ysize ;

}

f o r (j = 1 ; j <= ysize ; j++) {

23

u (xsize , j) = u (xsize �1,j) ⇤(insum / outsum) ;
}
f o r (i = 1 ; i <= xsize ; i++) {

// f r e e s l i p
u (i�1 ,0) = u (i�1 ,1) ;
u (i�1, ysize+1) = u (i�1, ysize) ;

//no output on v e r t i c a l
v (i , 0) = 0 . 0 ;
v (i , ysize) = 0 . 0 ;

}

setObj () ;

iter++;

} whi le ((dmax > DTEST) && (iter < 100)) ;

i f (PRINT) printf ("\ tPre s sure complete \n") ;

/⇤ Output ⇤/
i f (pt >= ptime) {

i f (PRINT) printf ("Time %.2 l f \n" , time) ;

uFile = fopen ("/Users / r a che l /SCC13/Python/u . txt " , "w") ;
f o r (j = 1 ; j <= ysize ; j++) {

f o r (i = 0 ; i < xsize ; i++) {

fprintf (uFile , "%l f " , (u (i , j)+u (i+1,j)) / 2 .) ;
i f (i != xsize�1) fprintf (uFile , " , ") ;

}
fprintf (uFile , "\n") ;

}
fclose (uFile) ;

vFile = fopen ("/Users / r a che l /SCC13/Python/v . txt " , "w") ;
f o r (j = 0 ; j < ysize ; j++) {

f o r (i = 1 ; i <= xsize ; i++) {

fprintf (vFile , "%l f " , (v (i , j)+v (i , j+1)) /2 .) ;
i f (i != xsize) fprintf (vFile , " , ") ;

}
fprintf (vFile , "\n") ;

}
fclose (vFile) ;

fpsi = fopen ("/Users / r a che l /SCC13/Python/ p s i . txt " , "w") ;

f o r (i = 0 ; i <= xsize ; i++) {
psi (i , 0) = 0 . ;

}

f o r (i = 0 ; i <= xsize ; i++) {
f o r (j = 1 ; j <= ysize ; j++) {

psi (i , j) = psi (i , j�1) + dy ⇤(u (i , j)) ;
}

}

f o r (j = 0 ; j <= ysize ; j++) {
f o r (i = 0 ; i <= xsize ; i++) {

fprintf (fpsi , "%l f " , psi (i , j)) ;
i f (i != xsize) fprintf (fpsi , " , ") ;

}
fprintf (fpsi , "\n") ;

}
fclose (fpsi) ;

pt = 0 . ;
}
pt+= dt ;
i f (PRINT) printf ("\tOutput loop complete \n") ;

}

re turn 0 ;

24

}

i n t main (i n t argc , char ⇤ argv []) {

runCFD () ;

r e turn 0 ;

}

A.4 Python/Matplotlib Output File Visualization

Contour/Streamlines

import numpy as np
import matplotlib
import matplotlib . pyplot as plt
import csv
import matplotlib . mlab as mlab

#Read F i l e
file = open (’ p s i . txt ’)
str = file . readlines ()
file . close ()
psi = [line . strip (’ \n ’) . split (" , ") f o r line in str]
f o r y in psi :

f o r x in y :
x = float (x)

#Make p lo t
levs = np . linspace (0 ,12 ,24)
plt . figure ()
plt . title (’ S t r eaml ines ’)
CS = plt . contour (psi , levs , colors=’k ’)
plt . show ()

Vector Field

import numpy as np
import matplotlib
import matplotlib . pyplot as plt
import csv

#Read File
file = open (’u . txt ’)
str = file . readlines ()
file . c l o s e ()

U = [l i n e . strip (’ \n ’) . split (" , ") f o r l i n e in str]
u = np . array (U , dtype=’ f l o a t 6 4 ’)

file = open (’ v . txt ’)
str = file . readlines ()
file . c l o s e ()

V = [l i n e . strip (’ \n ’) . split (" , ") f o r l i n e in str]
v = np . array (V , dtype=’ f l o a t 6 4 ’)

#Make p lo t
fig = plt . f i g u r e ()
plt . t i t l e (’ Vector F i e ld ’)
P = plt . qu iver (u , v)
plt . ylim ([�1 ,12])
plt . xlim ([�1 ,18])
plt . show ()

25

