
1

Numerical Modeling of Atmospheric Vortices

New Mexico

Supercomputing Challenge

Final Report

April 3, 2013

Team 56

Los Alamos High School

Team Members:

Sudeep Dasari

David Murphy

Colin Redman

Mentors

Venkat Dasari

Teachers:

Lee Goodwin

2

Contents
Executive Summary ... 4

Introduction .. 6

Phenomenological description of an atmospheric vortex .. 6

Tornado Morphology: One Cell vs. Two Cell Tornadoes... 7

Mathematical Models ... 7

Kuo’s Model .. 8

Sullivan’s model .. 10

Wood-White Model .. 10

Problem Statement ... 12

Problem Solution .. 14

Overview of Methodology .. 14

Fourth Order Runge-Kutta Loop and Shooting method ... 14

Lagrangian Particle Tracing Method ... 15

Euler and Newton’s Finite Differentiation .. 17

Coordinate Mapping and Matrix Transformations ... 17

Exporting and Visualization ... 19

Real World Dust Devil Simulator ... 19

Optimization ... 20

GPU optimization .. 20

CPU Multithreading .. 22

Data Output Optimization .. 23

Results ... 24

Model Validation ... 24

Predictions .. 26

1D Velocity Fields .. 26

3D Visualization ... 29

Debris transport maps .. 31

Conclusions: .. 34

Significant Original Accomplishments: ... 35

Discussion of our Team and Experience: .. 36

Acknowledgements ... 37

3

Bibliography .. 38

Appendix A .. 40

Java .. 40

Python ... 78

Cuda .. 82

4

Executive Summary
 Tornadoes such as Joplin, Mo (2011), Spencer, SD (1998), and Dallas, Texas (1957)

induce extremely high wind velocities that devastate structures and lift off large objects in their

path. Typically, a tornado takes up to an hour to materialize in the form of a narrow

axisymmetric vortex and sustains that structure for 10-20 minutes after which the tornado dies

down. Near real time simulation of tornado core flow could significantly improve accuracy of

Dopplar on Wheels (DOW) radar measurements which in turn would enable more effective

warning and evacuation strategies. Presently very simplified vortex models, such as the algebraic

Wood-White model and the modified Rankine model, are being used to simulate radar signatures

necessary to reconstruct real world tornadoes with limited success. Other alternatives, such as

commercial CFD tools, may provide more accurate results but take long periods of time to

compute. We believe that mathematical frameworks developed by Drs. Sullivan and Kuo provide

an optimum approach to bridge this gap because they are based on fluid-mechanically and

thermodynamically self-consistent physics to model atmospheric vortices with sufficient

accuracy. Implementation of their models required the solving of multiple and coupled non-

linear boundary value fourth order ordinary differential equations (ODEs) using a fourth-order

iterative Runge-Kutta method (RK4). Because certain sub-models consisted of differential-

integrals, we had to effectively implement Euler integration and Newton’s finite differentiation

algorithms, as well as create a coordinate transformation system to easily move data from polar

coordinates used for tornado computations and the Cartesian system for all other operations.

Combining all these methods and building on the works of scientists such as Kuo and Sullivan

we created a series of programs that accurately simulated vortex flow, examined dynamics of

particles with pre-defined mass and drag coefficients when subjected to said vortex, and exported

the data for use in visualization with Paraview, a multi-platform scientific visualization software

being developed by Sandia and Los Alamos National Labs. Furthermore, we validated the

models by comparing their predictions for wind velocities with measurements reported in the

literature for the 1998-Spencer and 1957-Dallas tornadoes. A surprisingly good comparison was

observed: which established validity of our implementation of Kuo’s models. Once these

computer models were built, it was quickly realized that they can be very time consuming by

modern standards and at the same time had tremendous potential for successful optimization

work. As such, we conducted a series of optimization tasks designed to speed up the execution of

our code including: (a) utilized the graphics processing unit (GPU) to accelerate the RK4 and

Euler integration computations, and finally the entire Kuo model, (b) used CPU multi-threading

feature to accelerate the particle tracing algorithm; and (c) implemented a new data format

system to reduce the size of the exported file and decrease write times. The optimization tasks

proved to be extraordinarily effective, as the GPU optimization dropped computing time by over

2000 percent, CPU multithreading proved to shave significant amounts of time from the particle

5

computing, and the data formats allowed the writing of large volumes of data while taking

smaller amounts of disk space as well as write time.

6

Introduction

Phenomenological description of an atmospheric vortex
There exists much complex physics behind the behavior and physical characteristics that

make up atmospheric vortices, such as hurricanes, tornadoes and dust devils. At a basic level,

such vortices form when heavier colder Arctic air finds itself atop of lighter warm air from the

Gulf of Mexico, and as a result is forced to sink toward the ground, while the warm air is forced

to rise, thus causing instability. This situation is akin to a bath tub filled to the brim with water

with a stopper preventing the water from draining into the pipes. When the stopper is pulled the

water begins to drain, but since the water is attempting to enter the drain from multiple different

angles a circular motion, or vortex, is observed, as it represents the simplest way for all the water

in the tub to exit. In an atmospheric vortex the colder air at a higher altitude begins to fall rapidly

while the warm air rises, and for the same reason the water in the bathtub began to spin, the

column of air begins to spin as the warmer air makes its ascent. As described by Neuenshwander,

tornadoes form when an exceptionally powerful thunderstorm collects enough heat and moisture

to form a supercell, which tips over to a horizontal orientation when it hits sufficient horizontal

drafts, thus forming a mesocyclone. The mesocyclone then tumbles through a series of not fully

understood transformations and at the other end emerges a tornado
 [1]

. This transformation, aka

tornado-genesis, might take several hours, but the tornado-vortex itself only lasts tens of minutes

during which time it causes immense destruction. It is this intense phase of tornado that we

intend to simulate.

Once a tornado is formed other factors affect it as well, such as pressure differences

throughout the vortex which in turn are a reflection of the buoyancy forces induced by

temperature differences. Generally, a more powerful tornado will have a larger difference

between temperature of the cold air up top and the warm air closer toward the bottom. This heat

gradient, referred to as the suction strength or buoyancy loading, generally describes how

powerful the forces driving the tornado will be and the greater the gradient the more powerful the

tornado. Other forces that determine the intensity of the tornado include the amount of energy a

block of air would have when it’s raised skyward, or its convective available potential energy

(CAPE) which is also related to the circulation intensity, and finally the eddy viscosity which is

an artificial construct to simulate the ‘solid-like’ core region of a tornado. Despite these complex

phenomena measured wind velocities exhibit a rather simple structure. Many twisters tend to be

axisymmetric even when extraordinarily high intensity tangential winds are involved. Further

velocities in the core region tend to increase steadily as the radius from the center of the tornado

increases until a maximum point is reached, after which the velocities decrease steadily until

they return to a baseline. Often meteorologists such as storm chasers collect important data about

the tornado such as; the CAPE, suction strength, and wind speeds. Such measurements are

7

crucial, not just to for assessing the power of tornadoes, but for the purpose of understanding the

advanced mechanics present in a tornado through media such as a computer model.

 Tornado Morphology: One Cell vs. Two Cell Tornadoes
 The tornadoes we analyzed vary between two basic forms: one cell and two cell

tornadoes. A one-cell tornado has a single column of upward flowing air in which the most

powerful winds occur, and is surrounded by an area of downward flowing air with slower wind

speeds. In a two cell tornado, there is a core of downward flowing cold air surrounded by a ring

of upward flowing air. Thus there is a center in which the velocities in the z direction are

negative (that is flowing downwards), and a ring outside the center in which the z velocities are

positive (that is, flowing upwards). Just like in the one-cell tornado, the velocities in two-cell

tornado also die down the further away you go from the core of the twister
[2]

. Figure below

illustrates these phenomena. Note that foci of our simulations are the three drawings on the left

side of the figure.

Figure 1: Diagram of one cell tornado on far left, and multiple cell tornadoes in middle. Far right

describes multiple tornadoes in a single super cell – like those occurred in Texas in 1957. Diagram

is from Church et al
[2]

 Mathematical Models
 Although theoretical models of tornadoes have existed since the 1950s they were not

accurate enough to yield any useful results when parsed into a computer model. Experimental

work conducted by Ward
[3]

 provided fundamental understanding into the underlying physics

behind a tornado and helped pave the way for new and improved theoretical work and models.

Improved measurements coupled with modeling resulted in a definitive and scientific work by

Davies-Jones
[4]

. We rely on this and similar publications by scientist such as Drs. Kuo and

Sullivan to develop our computer model.

 For the most part, modern computer modeling and simulation of tornadoes has taken two

parallel paths. The first technique relies on the computational fluid dynamics (CFD) codes to

simulate 3-D aspects of a developing tornado which was first demonstrated by Harlow and Stein

from Los Alamos National Laboratory
 [13]

. Recently Sarkar et al
[5]

 utilized commercially

available CFD code Fluent 6.0 to create a model twister and then they compared their predictions

to data from the 1998-Spencer tornado. Their approach, while accurate, was incredibly time

8

consuming taking in excess of a day to run on a powerful workstation. It was also extremely

sensitive to the boundary conditions and did not capture the storm thermodynamics accurately.

As described by Thakar et al,
 [6]

 another alternative is to take advantage of the

axisymmetric nature of a vortex flow which allows one to reduce the governing Navier-Stokes

equations into a set of non-linear coupled ODEs. This is the approach followed by Sullivan and

Kuo who generated models upon which our own computer simulations are based around. Yet

another approach that has been gaining ground recently due to its flexibility is that developed by

Wood and White
[10]

. This particular approach is referred to as a parametric rational function and

is developed for the sole purpose of real-

time simulation of radar signatures

generated by a tornado and to reconstruct

tornado structure from the radar

measurements. But what it gains in

flexibility it loses in accuracy, for

example predicted velocities tend towards

infinity within the core of the tornado. It

is notable that Kuo’s, Sullivan’s, and

Wood-White’s models take advantage of

the axisymmetry and are written using a

polar coordinate scheme shown to the left

in figure 2. The boundary conditions of

the models are also shown as well.

Kuo’s Model
 In 1966, Dr. Kuo proposed a tornado model that is directly solved from the Navier Stokes

equations. As described by Kuo his model is based on “a system of simplified yet sufficiently

accurate equations adequate by expanding flow variables”. These variables come in the form of

“two atmospheric parameters that are related to driving energies that are caused by the unstable

stratification and the vorticity that determines tornado radius”. Unlike his contemporary

scientists, Dr. Kuo
[8]

 modeled not only the fluid mechanics of the tornado but their overall

thermodynamics through the use of an energy conservation equation. It is notable to mention that

the Kuo’s model transitions from the two-cell vortex to a single-cell vortex by simply changing

the boundary condition. The underlying ODEs are as follows:

Figure 2- Polar unit vectors

Figure 2: Displays diagram of polar coordinates and boundary cond.

9

Where, x, F, σ, and m are non-dimensional parameters that are related to the physical parameters

as follows:

Radius, r, is related to x as

Tangential Velocity (v) =

Radial Velocity (u) =

Axial Velocity (w) =

Where,

 is eddy viscosity (m
2
/s)

 is buoyancy related suction strength (#/s)

 Pressure =

 is the density of the air (kg/m
3
)

 a is the ambient pressure (Pa)

 is the circulation strength (m
2
/s)

Suction strength, and circulation intensity, are related to temperature () and ceiling height

(h) as follows

 and

Weather stations across the mid-western states monitor conditions in the super cell, especially

Pa, ρ, and regularly. Below in figure 3 is an

example of a sounding graph used by

meteorologists during 1998-Spencer tornado.

Recorded readings illustrate the instability as shown

by the slop of the red line, which is negative

initially up to a pressure of 157 milli-bar (also

10061 ft). Negative pressure indicates that density

is increasing with elevation which is inherently

unstable. The stable layer exists above 10,0061

feet. For this storm the estimated β values ranged

between 0.01 and 0.02 and values ranged between

10

7500 and 9000 m
2
/s. Those values were used for validating flow velocity predictions by our

model.

Figure 3. Omaha, Nb, sounding graph

on 31/May/98 Spencer Tornado

After proposing his ODEs, Kuo found an approximate closed form solution to the equations

above to facilitate easier computation of velocities. His analytical solutions are as follows.

; ; and

It is easy to see that these equations can give rise to non-physical predictions as x0 u, v∞.

While less accurate than the ODEs, closed form solutions offer an easier way to craft a similar

prediction using less computing time and allowing for a simpler code.

 Sullivan’s model
 R.D. Sullivan, a contemporary of Kuo, followed a similar procedure to simplify the

Navier-Stokes equations into a set of coupled ODEs, and then derived a set of analytical

expressions. Sullivan ODEs were the subject of a 2009 Master’s Thesis by Mr. Baker
[7]

, who

concluded that Sullivan’s equations can be extremely unstable, stiff, and cannot be generalized

easily at low eddy viscosities
 [7]

. We independently concluded that Sullivan ODE equations

become unstable during the shooting method implementation of RK4. So we chose to use his

closed form solution instead, which offers near similar results but is less accurate than the ODEs.

These equations also give rise to non-physical predictions as x0 u, v∞.Following, are the

closed form solutions
[9]

.

; ; and

Wood-White Model
 The Wood-White model, written in 2010, is a parametric model that can be fit to the

actual measured tangential velocities and then inversed to estimate other parameters of interest

including u, w, pressure, circulation strength, and buoyancy related to suction strength.

11

; ; ; and

Where the parameter represents the eddy viscosity of the vortex at hand, and n, , are parameters

changed by the user to fit the v vs r graph the model generates to one observed in real life. The u, and w

are then solvable once the v value is derived
[10]

.

12

Figure 4. Problem statement at- a-glance.

Problem Statement
Multiple fundamental problems still exist with the modeling of atmospheric vortices,

such as tornadoes and dust devils, that this projects attempts to address. Several modeling

options exist for simulating tornados, as shown in Figure 4. The primary models in use currently

for the modeling of such phenomenon are the Rankine models originally developed in 1800’s.

This simplified model does not account for two-cell vortices and was eliminated from further

consideration in our study. On the other hand, commercial CFD codes could be used to obtain

accurate predictions, but they take long periods of computational time, on the scale of hours or

even days. Further, utilizing CFD codes would not give this team the opportunity to explore the

physics behind a tornado or engage in optimization tasks to the extent with which we desire.

The dynamics of a fully developed tornado – as confirmed by most recent Doppler on Wheels

radar imaging – to a first-order approximation are very similar to steady axisymmetric vortices.

Under such an assumption the governing Navier Stokes equations have been reduced into a set of

coupled non-linear

ordinary differential

equations by Drs. Kuo

and Sullivan. We have

chosen mathematical

framework of these

two researchers in our

study. Though they

were originally

postulated in 1960s, as

demonstrated by Baker

in 2010
[7]

solutions to

these ODEs are not

straight forward, and are complicated by the fact that the boundary conditions are ill defined, the

ODEs are stiff, and the geometry is extremely large. Our objective is to employ modern

computation algorithms to solve ODEs that include Eulerian fluid mechanics equation, as well as

Lagragian particle transport equations, which come out to around 20 equations altogether. These

equations formed the basis for our computer model that can: (a) in near real time simulate an

atmospheric vortex with sufficient accuracy, (b) utilize its predictions to predict how debris or

other objects would move through said vortex, and (c) then export the data for visualization in

the state-of-the-art scientific visualization software Paraview. Upon verifying code predictions

by comparing with the approximate solutions presented above, we extended the code to simulate

the 1998-Spencer tornado and 1957-Dalls tornado. These simulation results were compared with

13

the actual measurements as a step towards validating the code. Then we optimized the created

computer code through the use of the GPU, CPU multithreading, and data format optimization.

14

Problem Solution

Overview of Methodology
 As shown in Figure 4, the tasks necessary to create a model that would fulfill our

expectations were broken into four main categories: the RK4 loop that would be used to solve

ODEs that describe the fluid flow in an Eulerian frame, Euler’s method for integration especially

to compute pressure once velocities are known, Newton’s method for differentiation used to

compute axial and radial velocities using the Wood-White model, and of course a coordinate

transformation system that switches between polar and Cartesian coordinates, and a Lagrangian

particle tracer program. We employed most if not all of these steps in the writing of separate

programs, each built to utilize either Kuo’s, Sullivan’s, or Wood-White’s methodology. We

utilized a combination of Python and Java for most of the implementation of the solution. C was

utilized mainly during the optimization phase of our program, which will be elaborated on in the

optimization section of the report.

 Fourth Order Runge-Kutta Loop and Shooting method
 The fourth order Runge-Kutta method (RK4), also known as the classic Runge-Kutta

method, is used extensively throughout our various programs, be it solving the ODEs behind

Kuo’s equations or handling the calculations necessary for the Lagrangian particle trace system.

Assuming yn is a scalar or vector value, t is a scalar to correspond to a time or x value with which

we are approximating, and h is the step with which we are sampling, then given a function f

which represents an ODE, we can utilize the RK4 methodology to solve for yn+h and tn+h. using

the following equations.

We adopted this method on multiple occasions into Java, Python, and C most notably for

solving the ODEs behind Kuo’s equation. First, in order to solve Kuo’s model the ODEs

described in the introduction under Kuo’s model were re-written as follows.

15

The variables F, , and m were solved after being subjected to the following boundary

conditions.

Because the RK4 loop is not capable of solving such a boundary value problem, we

utilized a shooting method that iterates over various guesses for F’(0) and m’(0) until the

boundary conditions are satisfied. We used a self implemented bisect root finding algorithm to

find the appropriate initial values, that were then stored into an array of type double and size

five, and filled in the order of [F,F’,F’’,m,m’]. At each gridpoint, the first step is to compute

dimensionless distance x as given by where, r is distance the gridpoint is from the center (that

is,). Then the vector [F, F’, F’’, σ, σ’’, m, m’] is computed at x using the RK4 loop. The F,

F’, and m elements of the data set are then used to calculate the u, v, w, and pressure values for the grid

point at hand; σ is used to compute logarithmic temperature (which is not used much in our analyses,

hence not shown in our code). Since, as one may imagine, the RK4 loop is at times quite computationally

intensive we took advantage of the axisymmetric nature of the problem yet again. Instead of calculating

the vector at each gridpoint, we split the physical grid into four quadrants and only calculated the points at

quadrant one, before any other values were calculated. As the F, F’, and m values are the only ones used

later in calculations only they were stored into their own two dimensional arrays (i.e. all F values were

stored in an array named F) and then were reflected across the axis. After all the RK4 calculations were

finished we continued to calculated the u, v, w, and pressure values at each gridpoint, and the program

accessed the needed F, F’, and m through the array they were contained in. The actual code that

compromised the RK4 loop and shooting method can be found in Appendix A, under the Java section.

Either KuoTest.java or KuoTestMP.java will contain it.

 Lagrangian Particle Tracing Method
 The particle tracer method is designed to determine how a vortex as modeled by our

simulator would affect its surroundings, such as debris or other objects in its path. This feature is

important because Doppler on Wheels radars often rely on reflections from the debris to resolve

flow fields within the core region. Essentially, the method sets up a particle with a certain mass,

16

area, and drag coefficients, and starting (x,y,z) coordinate as well as a starting <Vx,Vy,Vz>

velocity vector. The path the particle would follow when subjected to a flow field is described by

Newton’s equations of motion, namely F=ma. Mathematically then, force is expressed in vector

notation as:

Force is caused by the drag and further expressed as:

Resulting in over all force balanced equations of:

Where:

The following three equations are

used with the previous three in the

RK4 loop to trace the path of the

particle; the situation is visualized

below in figure 5:

Figure 5: Describes the various forces

that affect movement of a particle in a

flow field

17

The initial conditions employed by the methods are the initial (x,y,z) coordinates of the particle

and its initial <Vx,Vy,Vz> velocity values. Then an initial time value of 0 is set and the

maximum time value of (in this case) 250 seconds is initialized. Then the RK4 method moves

from the initial time value to the maximum at an interval of 0.01 seconds, while employing the

previous six equations to determine the particles (x,y,z) and <Vx,Vy,Vz> values at each

timestep. The values are then stored into their own array so that the [x, y, z, Vx, Vy, Vz] values

for the particle at each timestep can then be exported into a .csv file and visualized in Paraview.

This particular method was only written in Java and a full listing of the code utilized in the

particle trace can be found in Appendix A, under the Java section. Sullivan.java, KuoTest.java,

or KuoTestMP.java will contain the method but only KouTestMP.java will contain a

multithreaded variant.The area of the particle was subsumed into the drag coefficient in our code.

 Euler and Newton’s Finite Differentiation
 Throughout all three models; Kuo, Sullivan, and Wood-White, we were often forced to

integrate functions. In Kuo’s and Sullivan’s models the Euler integration method was used to

solve the function necessary to find the pressure in each grid cell. Furthermore, the H function

that is used throughout Sullivan’s model depends on Euler integration in order to find a valid

solution. The Wood-White model depends on Newton’s finite differentiation methods heavily in

order to invert the algebraic approximation and yield results other than the v unit vector value.

 Coordinate Mapping and Matrix Transformations
 In order to yield results that could be successfully used for 3d visualization in a program

such as Paraview, we had to first create a grid system that would serve as a framework for

literally everything that followed. The most logical choice was to utilize a set of three

dimensional arrays of type float to store the data for each gridpoint. However, since we aspired

to simulate an entire vortex, not just the core or outskirts, we would have to set up a rectangular

grid space around the size of 2 km by 2km by 1 km, in our program, with the center of the

tornado being positioned in the middle of the grid at z=0. As one might imagine such a large

array (2000x2000x1000 elements) would be prohibitively expensive, are far as computing time

is concerned, so we came up with a compromise that would allow us to maintain a large world

area while still keeping a manageable array size. We created an Rmax variable, a resolution

variable, and a deltaR variable, the first of which dictates the maximum distance away from the

center of the tornado our gridworld world will evaluate to in real world units, the second dictates

how many gridspaces that our program will have from the center of the tornado to the Rmax, and

the third is represented by Rmax/resolution. For example, say that you want to evaluate the

vortex to 1000 meters away from you origin (i.e. Rmax=1000) in the x direction, 1000 in the y,

and 1000 in the z, at a resolution of 50. The program would create an array of 100x100x50

elements and divide the Rmax by the resolution to obtain a deltaR of 20. Each element of the

array symbolizes a 3d grid space in the simulated world. However, if the coordinates of the

gridspace say (1,1,1) must be multiplied by the deltaR value to translate them into real life values

that can then be inputted into the various models.

18

 Yet another hurdle that must be overcome before our array system can actually symbolize

a real three dimensional grid is the fact that the coordinates (0,0,0) are not the same as the array

element [0][0][0]. Since array elements can never go negative, assuming the resolution is 50, the

element [0][0][0], is actually symbolized by the coordinates (-50,-50,0). In order to get around

this you must subtract the resolution from the elements x,y,z values in the array, and then

multiply by deltaR to get its x,y,z values that would correspond to real life. Thus element

[0][0][0] would correspond to (-1000,-1000,0) in real life. (-1000,-1000,0) would then be fed

into the various subroutines in the program to find the u,v,w and pressure the simulated world

would experience at that point. It is noteworthy that z never goes below zero in real life, so the z

coordinate need not go through any correction arithmetic other than being multiplied by deltaR.

 Finally, the models we depend on utilize a polar coordinate scheme while the Paraview

visualization software, and really most programs, utilize a Cartesian scheme. Thus the array we

construct to store our values utilizes a Cartesian scheme, and utilizes polar to Cartesian

translations to allow the data to yield meaningful results. Equations used for translation are as

follows:

Relationship among these variables is shown in Figure 6.

Figure 6: Illustration of coordinate transformation used in our model.

Once all these elements are put together, the following process is constructed as to how

the program iterates through points inside its grid. The program starts out at the array element

[0][0][0] and then iterates to the elements [resolution*2][resolution*2][resolution]. At each array

element the x,y,z values corresponding the array indices are subtracted by resolution and

multiplied by deltaR to get their real life values. Then these real life values are used to determine

the u, v, and w unit vector values at each of the real life gridspaces. The Cartesian to polar

coordinate transformations are necessary in the above step to translate the x,y,z values r and theta

values which will then be used by the equations outlined by Kuo and Sullivan, as well as the

19

transformations back from polar to Cartesian coordinate schemes. Then all the derived data is

exported out under a Cartesian coordinate scheme for use in visualization programs such as

Paraview. The polar unit vectors and r values are exported to in case one wishes to compare them

to other polar data. The array system is seen throughout the code in the Sullivan and Kuo models

written both in Java and C, listings of the full code can be found in Appendix A under the Java

nd CUDA sections.

 Exporting and Visualization
 We utilized two programs to handle the bulk of our visualization work, Microsoft Excel

and Paraview. The first of which is a basic spreadsheet application useful for doing basic

visualization and graphing work, the second is an open-source, multi-platform, interactive 3D

visualization program developed by Sandia National Laboratories, Los Alamos National

Laboratory, the US Army Research Lab, and Kitware. Using Excel we created a series of v unit

vector vs. r graphs to be used for comparing the various models as well as validation with real

life tornadoes. Paraview was used for the bulk of the visualization including some graphing of

the pressure, u, v, and w variables vs r, generating streamlines and glyphs to provide a rich and

graphical way to visualize our results, as well as offering a simple way to show the path our

particles would have travelled in 3D.

For a good deal of time, the program exported the data utilizing the comma separated

value (CSV) format which was slow and took large amounts of disk space. To conserve time we

switched over to a MySQL database system that both sped up write time, and reduced disk space.

We will elaborate more in the optimization section.

 Real World Dust Devil Simulator
 In order to validate the output of the computer model, small-scale dust devils were

formed in a vortex generator. The vortex generator is an apparatus designed to mimic the natural

formation of dust devils in a controlled environment. The updraft within the generator was held

constant across all trials. The circulation of air within the generator was manipulated to

determine relationships between vorticity and tangential velocity.

Tangential velocity within the generator was determined with a process known as particle

image velocimetry. A small Styrofoam ball was dropped into the apparatus and, using a strobe

light and a long-exposure camera, pictures were taken which showed the ball’s location over a

regular timestep. These images were analyzed with a basic computer program to determine the

tangential velocity of the dust devil. We ran out of time before we could utilize this vortex

generator as further validation of our computer model. We plan to integrate this into the

presentation we will give at the expo.

20

Optimization
 We conducted three main optimization tasks with the goal of significantly decreasing the

execution time, as well as the disk space and general computing footprint our program utilized.

The tasks include, GPU optimization of the Euler integration loops as well as the RK4 method

and Kuos model, CPU multithreading of the particle trace system used throughout our program,

and optimization of the storage format used to store our data, namely through the use of a

database rather than CSV files. While all the modes of optimization did in fact utilize available

resources more effectively and resulted in faster run times, and smaller data footprints by far the

most successful was the GPU experimentation judging by nothing other than the huge amounts

of times saved, while returning the exact same results.

 GPU optimization

 A GPU unlike a CPU has massive opportunities for parallelization that makes porting

over a program such as our own especially enticing. While it may seem to be a difficult task to

parallelize our model, it is in fact quite easy due to the lack of interdependencies between the

points in our model. As far as our program is concerned the gridspace (1,1,1) and the gridspace

(2,2,2) are completely separate from each other. Taking advantage of this trait we utilized the

Compute Unified Device Architecture (CUDA) framework developed by the company Nvidia in

an attempt to speed up our code using GPU (it is noteworthy to mention that CUDA code will

only work on an Nvidia GPU with CUDA cores). On the most basic level, our program is

iterating through an array, performing mathematical operations on each element of the array, and

then storing the results back into the array to be exported. CUDA offers a block and thread

framework that allows us to take advantage of this trait. Essentially a block is a group of threads

that run on one multiprocessor on the GPU. Each multiprocessor contains a set of stream

processors upon which one or more threads run on. Blocks are completely independent from one

another and threads have limited synchronization abilities which are useful in only certain

situations. The program to be run on the GPU is referred to as the kernel, which should be

written in such a way that the task contained in each can be split across multiple blocks and

threads which are then executed simultaneously thus achieving a major speed up from a CPU

implementation of the same code. We take advantage of this feature by first initializing a set of

arrays using the same coordinate mapping system described in the problem solution. Then, a set

of pointers are created on the CPU and space is allocated on the GPU using the cudaMalloc

method. The kernel is then called with the pointers as parameters and a block size of

resolution+1, and thread size of resolution +1. (note that in the GPU version of the code

RES=2*resolution). On the kernel the x, and y indices that each thread will be tasked with

handling corresponds to the blockId and threadId the thread is assigned. The z indices are

accounted for through the use of a for loop that each thread handles. Then the same calculations,

once conducted on the CPU, are done so on the GPU, and once again taking advantage of the

21

axi-symmetric nature of our problem the final values are translated across the x and y axis. Once

all the values are computed in parallel by the GPU, the values, now stored inside the pointers on

the GPU’s memory, are copied into the arrays previously defined through the use of the

cudaMemcpy method. Then using a similar method as defined on the CPU the values are

exported to a CSV.

 The GPU optimization resulted in massive speedups in all scenarios it was tested under.

Even though the GPU would have been theoretically doing more calculations than the CPU, as

far as the Euler integration loop was concerned, the GPU did in hundreds of milliseconds what

took the CPU tens of thousands, resulting in a peak 13156.05 percent speed up. Figure 7 below

shows the time it took in milliseconds for the CPU to conduct calculations vs. the GPU at

varying resolutions utilizing a logarithmic scale (lower on y axis is better). GPU optimization of

the RK4 loop resulted in similarly impressive gains, with the GPU doing the same calculations

that took the CPU hundreds of thousands of milliseconds in just thousands of milliseconds. At its

peak the GPU cut down execution time from the CPU by 4591.552 percent. Figure 8 below

shows the time it took in milliseconds for the CPU to conduct the calculations for the RK4 loop

vs. the GPU at varying resolutions utilizing a logarithmic scale (lower on y axis is better).

Following the same trend of the RK4 loop and the Euler integration loop, the GPU

implementation of Kuo’s model achieved significant performance improvements over its CPU

counterparts, doing once again in thousands of milliseconds what took the CPU hundreds of

thousands. At its peak the GPU achieved a percent decrease of 4056.718 percent from the CPU.

Figure 9 below shows the time it took in milliseconds for the CPU to conduct the calculations for

Kuo’s model vs. the GPU at varying resolutions utilizing a logarithmic scale (lower on y axis is

better).

Figure 7. CPU vs. CUDA

Figure 8. CPU vs. CUDA for RK4 computations. Figure 7. CPU vs. CUDA Euler’s Integration

22

With such impressive gains it’s

understandable for one to

question if the GPU is returning

the same results as the CPU.

Below in Figure 10 is a set of

graphs taken after running

Kuo’s model both on the GPU

and on the CPU and comparing

their results. As you can see the

v, u, w vs r graphs, and values,

are the same despite the fact

that the GPU completed much

faster than the CPU.

Figure 10, to the left is the graph of the CPU’s results, in the middles the GPUS, and to the left the two
graphs placed over each other. X-axis is radius and y axis is velocity in m/s

 The CUDA code was all written in C, and a full listing of the code can be found under

Appendix A in the CUDA section.

CPU Multithreading
 Although less optimization tasks were performed with the CPU than with the GPU, we

still conducted work that decreased the time the particle tracer program took to run. Rather, than

just tracing one particle at a time by calling the appropriate, waiting for it to finish, then

repeating the process. We took advantage of Java’s built in multithreading functionality. We

created a new Thread object for each of the particles we wanted to run, and then ran them

simultaneously in order to improve efficiency. We found that without employing multithreading

it took 55 milliseconds for the particle tracer to run one particle, but while running 3 particles

simultaneously we allowed each one to complete in 35, 40 and 44 ms respectively. Thus we were

able to reduce the time each particle took to run separately and quite effectively reduced the total

time running 3 particles would have taken if they were not multithreaded.

Figure 9. CPU vs. CUDA for the entire Kuo’s model

23

Data Output Optimization

 To store the results of our program, we chose to use a MySQL database. The program

exports results of every run to a server that stores the results for future use. In the database, runs

are stored as individual tables that are given a name with a universally unique ID assigned by the

program that writes them. Currently manual access to the database is possible, while a proof-of-

concept python script exists for loading directly from the database to Paraview (we plan to

complete this script so it will be fully functional shortly).

 Exporting program results to a database instead of a text based file has multiple benefits.

First and most importantly is that results in a database are much easier to track and store over

longer periods of time. Due to the increased accessibly of the results, they are easier to compare

and analyze. In addition, MySQL uses relatively little disk space. It uses a more space-efficient

binary data format, and because of the differences in how a database can be loaded into Paraview

it should be possible to entirely remove one of the columns that needs to be stored. The reason

for this is that the velocity on the Z Axis must be stored redundantly in order to load a file

properly directly into Paraview, but a database would be loaded by a script that could simply

correct the table as the values are read in. Next, the nature of how queries function in the sequel

language that MySQL uses means that only portions of the data that need to be used can be read,

limiting the time that it takes to access specific pieces of information. This increases efficiency

greatly for many types of data-access because it is often not necessary to acquire all the data that

is stored. Finally, MySQL is designed so that it can be used on a remote server. Our current

server is connected to the network, but is only accessible on the local area network. Still, the

potential exists to find a dedicated server and use it to store our runs, which has the benefit of

allowing global access to our data and allowing distant computers effectively to run the program

in parallel. The currently functioning Java code can be found under Appendix A as the last entry

in the Java section.

24

Results
 This section provides a summary of important predictions of the model including a

comparison and validation with wind velocities measured in real world tornadoes, in real time.

Results presented include velocity, stream tracers, glyphs, and debris transport predictions

visualized using the Paraview software.

 Model Validation
 The 1998-Spencer and 1957-Dallas tornadoes were two Fujita Class 4 tornadoes for

scientific measurements are widely published (de facto these two tornados are used as yard-

sticks for comparison). We simulated these two tornados, using our models and employed them

as a form of validation. Table 1 provides important parameters measured during these tornadoes

that were used in our simulation, and references to the data. Also note that these values closely align

with the range of values provided by Church et al
[2]

. Table 1 and were estimated in previous

studies using meteorological data
[11, 12]

comparison of the model results with the measured data

are presented below in Figures 11 and 12.

Table 1. Meteorological conditions of the tornados used for validation purpose.

Tornado (m
2
/s) β (#/s) (m

2
/s) References

Spencer, SD 8750 and 7990 0.01 5 Wurman et al
[11]

Cleveland, TX 7500 and 6700 0.01 - 0.02 5 Hoechem et al
[12]

25

Figure 11 (Spencer, SD tornado) : In test case 1 (TC1) was 8750, in test case 2 (TC2) was at 7990.
Also, velocities are 2-m averages. Depending on the reference peak values of measured values changed
slightly as ground velocities are subtracted.

Figure 13 (Cleveland TX): In test case 1(TC1) was 7500 and was 0.01, in test case 2 (TC2) was 6700
and was 0.0135.

 Our models provided very good agreement with the real data. It is worth noting that this

agreement is as good as the comparison presented in Wurman et al
 [11]

using the Wood-White

26

models, and those presented in Sarkar et al
 [5]

 which utilized a full scale CFD. Finally, agreement

between Sullivan’s equations and the measurements are not as good as our adaptation of Kuo’s

model. It should however be noted that there is considerable uncertainty in the measurements,

especially those for the Cleveland TX tornado. 3D Doppler on wheels technology used in

measurements of the Spencer tornado have reduced the error considerably, but still uncertainties

as large as 25 percent are to be expected.

 Predictions

 1D Velocity Fields

 After validation, Kuo’s model was run for three cases as described in Table 2. The first

case is a one cell tornado, the last two are two cells.

Table 2. Meteorological conditions of the tornados used for predictions.

 (m
2
/s) β (#/s) (m

2
/s)

Case 1 5000 0.01 5

Case 2 10000 0.02 5

Case 3 10000 0.01 5

 Results are shown in Figures 13-15. No numerical instabilities were observed in our

simulations. As shown here maximum wind velocities can reach as high as 123 m/s or 275 MPH.

The radius of such an eye could be as large as 100’s of meters. In addition sustained high winds

exist at distances reaching a kilometer and beyond. These figures also show complicated flow

fields that exist in two-cell tornadoes. At the very center of the tornado, cold air is “piped in”

from above at high velocities. Adjacent to these velocities are fast upward moving velocities that

carry warm air to high elevations. Radial velocities vary correspondingly outwards in the narrow

central region and inwards in the outward region. This phenomenon is much less complex than in

the case of a single cell tornado where it acts like a single pipe only moving air upwards.

27

Figure 13 u, v and w vs r graphs for Case 1

Figure 14: u, v, and w vs r graphs for Case 2

28

Figure 15: u, v and w vs r graphs for Case 3

29

 3D Visualization

 As previously discussed the Paraview software was used to visualize model predictions.

Figures 16-19 illustrates these fields. Figure 16 displays vectors glyphs that clearly establish

inward and radial movement of the flow. The stream tracers illustrate 3D movement of an

imaginary air packet dragged upwards by the tornado. As expected the stream tracers exhibit axi-

symmetry which was also observed in the Spencer tornado. Note the central core region where

the flow is downward, in the two cell tornado and how the pressure of the air is consistently

higher towards the core of the tornado. Also, note that the radial velocities are strongest towards

the core of the tornado and weaker on the outskirts.

Figure 16. Glyph map of case 3, colored by u velocities

30

Figure 17 stream tracer of case 1 colored by pressure

Figure 18 stream tracer of case 2 colored by v velocities

31

Figure 19 stream tracer of case 3 colored by pressure

Debris transport maps

 As previously discussed, these winds are capable of lifting off and carrying large debris.

We have used five arbitrarily chosen “particles” to simulate this phenomenon, and modeled the

path they would follow using our particle tracer program. Table 3 provides drag characteristics,

as well as mass of the particle.

 Mass of particle (kg) Drag Area (Cd ∙ Af)

Particle 1 1.0 0.1

Particle 2 1.0 0.25

Particle 3 10 0.5

Particle 4 10 1

Particle 5 100 3.2

Figures 20-22 below present visualized model predictions as to the path all five particles will

follow within each case. Each particle was started off at a high altitude, near the center of the

tornado.

32

Figure 20 Paths for case 1 overlaid atop a stream tracer colored by w

Figure 21 Paths for case 2 overlaid atop a stream tracer colored by v

33

Figure 22: Paths for case 3 overlaid atop a stream tracer colored by w

34

Conclusions:
It is our conclusion that the complex dynamics of a tornado can be simulated with

sufficient accuracy using the mathematical framework developed by Dr. Kuo of University of

Chicago. Scientists have known that models such as Kuo’s are superior to simple algebraic

models that are in use right now but they have settled for real-time computation enabled by

simple models over accuracy. Other’s have utilized commercial CFD codes which generate

similar results, but take hours or even days to run. By implementing the ODEs on GPU and

multi-threading on CPU, we have demonstrated that scientifically superior models can also be

computed in real time, and that their data can also be visualized in 3-D in real-time. As GPUs

continue to improve, it is our belief that algorithms such as these could be used by the

meteorologists to reconstruct radar images in real-time.

Two areas of further research in this general area should be explored: first extending the

Kuo’s ODEs to simulate unsteady effects of a tornado and secondly, linking our model to radar

signature model to simulate Doppler velocity signatures of evolving tornados as described by

Davies –Jones and Wood
[14]

.

35

Significant Original Accomplishments:
 Throughout the extensive research we conducted as part of creating a working

implementation of the various components of this project we found that some goals that we had

set out to achieve had never been done before. While Kuos’ model was originally developed in

1960-70, it is our belief that we are the first to have compared data generated by Kuo’s models to

data collected in the field using most recent Dopplar on Wheels technology; previous

comparison of Kuo’s models were with legacy data with large uncertainties. Thus, our results

comparisons between Kuo’s model and Sullivan’s model and measured data are one of a kind.

Based on this good comparison we believe meteorologists are more likely to use such phys-cs-

based models rather than parametric models of the kind being in use right now. The particle

tracer system we developed in itself may not be new, but its application to tornado conditions is

relatively new. We have seen one other instance where particle transport was studied using

Rankine and modified Rankine methods which are only capable of simulating tangential

velocities, but not the vertical and axial velocities. Unlike that previous study, our model

accounts for all three components of velocity and thus provides more accurate (at least

theoretically) particle dynamics. We did not find a single reported scientific study where multi-

threading of particle computations on the CPU were used to study their dynamics in real time –

which is an original contribution as well. More importantly this feature could enable storm

chasers to compute simulated radar tracks and also to invert radar tracks to reconstruct flow

fields. Finally, the GPU code optimization we ran utilizing the CUDA framework was the first

ever such experimentation conducted as far as Kuo’s model is concerned. While we were able to

find certain implementations of the RK4 loop on a GPU, none of the papers found discussed

solving non-linear, coupled, ODEs or a boundary value problem. Further, none of the current

RK4 optimization work done on the GPU has been done in such a way to speed up RK4

calculations over a coordinate grid (our ODEs had to be solved at each unique r value over the

entire coordinate grid), instead focusing on creating a method that can solve an ODE one at a

time. Certainly we do not claim that previous scientists could not solve such a problem, but only

that none of these previous optimization works had a problem of our type in mind during the

writing of their papers.

 While uniqueness of individual accomplishments could be debated, even disagreed, it is a

fact that computational approaches demonstrated by us – such as, use of physics-based ODEs to

compute flow and temperature fields and Lagrangian particle transport in near-real time, their

acceleration using GPU-based computation and CPU-multi-threading – have the potential to

transform the way computation is used in researching tornados and in developing more accurate

advanced warning technologies. Its significance is further underlined by the fact that two recent

Master’s Theses in Mathematics are focused on application of ODE’s to simulate tornadoes.

36

Discussion of our Team and Experience:
 Our team is composed of three sophomore students from Los Alamos High School. All

the members have extensive experience with the Supercomputing Challenge. This is Colin

Redman’s 6
th

 year competing, Sudeep Dasari’s 5
th

, and David Murphy’s 3
rd

 year. Prior

experience was extraordinarily useful in planning and implementing this year’s project.

Normally, this team has done work utilizing agent based modeling software such as Madkit and

Greenfoot to optimize the likes of shipping facilities. This is the first time we have ever

conducted such a physics based project, and we found it to be an extraordinary learning

experience, and most importantly fun. Throughout the course of the year we learned in depth the

complex physics that compose a tornado, as well as how they relate to the world around them.

For the first time we were able to take our understanding of the physics behind a situation and

translate that into a code that could then be used to provide a realistic model of said situation.

Such a unique experience proved to be extremely educational and stimulating. Furthermore, we

were for the first time given a computational task that begged for optimization through use of;

the GPU, CPU multithreading, and data optimization. This is the first time we were able to

conduct such experimentation in a Supercomputing project and the opportunity proved to be

useful.

 Both Sudeep and Colin have worked together for the past four Supercomputing

challenges and this is the third year David has been part of the team. Sudeep and Colin both

contributed their programming talents, and while Sudeep handled most the mathematical and

GPU optimization work, Colin was more involved in data optimization and writing of the final

report. David’s physical model, while not implemented in the final report, provided some

interesting validation options and will be included in our expo presentation. He also used his

artistic talent to make graphics and did a good job with data analysis.

37

Acknowledgements
 First, our team would like to thank the New Mexico Supercomputing Challenge for

making this project possible. Next, we would like to thank Venkat Dasari who was our mentor

this year. He helped us with; research, understanding the physics behind a tornado,

understanding the equations, and proofreading our final report. The project would not have been

a success without his valuable insight. Our team would also like to thank our teacher Lee

Goodwin who provided encouragement throughout the year. We would like to thank those who

evaluated our project at the Northern New Mexico Community College, as well as all those who

reviewed the various reports we submitted. Their suggestions as well as constructive criticism

helped guide us through the last stages of the report. Finally, we would like to thank Mr.Robey

for all the valuable insight he gave to us as to the current tornado modeling conventions early in

the year.

38

Bibliography
1. D. Neuenshwander, The Physics of Tornadoes, SPS Observer (2011)

2. C. Church, J.T. Snow, G.L. Baker and E. Agee, “Characteristics of Tornado like Vortices as a

Function of Swirl Ratio,” J. Atm. Sciences, Vol. 36 (1979).

3. N. ward, The exploration of certain features of tornado dynamics, J. Atm. Sciences, 29: 1194-1204

(1972)

4. R.P. Davies-Jones, Tornado dynamics, thunderstorm morphology and dynamics, US Govt Printing

Office (1986)

5. K.P. Sarkar, Likuai, F.L. Haan, W. Galkes, CFD Simulations of the flow field of a laboratory

simulated tornado and comparison with field measurements, Wind and Structures, Vol. 11, No. 2

(2008)

6. H.S. Thakar, Mathematical Models of the Geophysical Vortices, Manchester university (1969)

7. J.T. Baker, High Viscosity Solutions of Navier-Stokes Equations Modeling a Tornado vortex, Master

of Science in Mathematics, Texas Tech University

8. H.L. Kuo, On the dynamics of convective atmospheric vortices, J. Atm. Sciences, Vol. 23 (1965)

9 . R. Sullivan, A two-cell Vortex Solution of the Navier-Stokes Equations, J. Aero. Space Science, 26,

767 (1969)

10. V.T. Wood and L.W. White, A parametric Wind-Pressure relationship for Rankine and Non-Rankine

Cyclostropic Vortices, American Meteorological Conference, (2011)

11. C. Alexandar and J. Wurman, The May 1998 Spencer, South Dakota Storm, Part 1: The evolution

and environment of the tornadoes, Mon. Wea. Rev., 133, 72-76 (2005)

12. N.H. Hoechem, Wind Speed and airflow patterns in the Dallas Tornado of 1957, Monthly Weather

Review, 88, 167-180, (1960)

13. Harlow and L.R. Stein, Structural Analysis of tornado like vortices, J. Atm. Sci, Vol. 31, 1974

14. Davies-Jones and V.T. Wood, Simulated Doppler Velocity Signatures of Evolving Tornado-like

39

Vortices, J. of Atm. And Oceanic Technology, Page 1029, (2006)

40

Appendix A
 The following section contains the final versions of the code developed throughout the

course of this project. While there was more written, those programs were alpha or beta versions

of the following program and thus it would serve little purpose to include them. This section has

been split into three sections, Java, Python, and CUDA. The Java code makes up the backbone of

our project, and the final programs used for visualization of results in Paraview were written in

Java. Some Python was used throughout the project as a means to develop alpha versions of all

models and easily check the validity of generated results through use of matplotlib. The CUDA

code was written in C, and contains only the code written for optimization with the GPU.

 Java

SullivanTest.java

import java.io.FileWriter;

import java.io.IOException;

import javax.swing.JFileChooser;

//java implementation of Sullivan's equations and Lagrangian Particle Tracer

public class SullivanTest {

 private static final float eV = 5;// eddy viscosity

 private static JFileChooser chooser = new JFileChooser();;

 private static final float R = 7500;// circulation strength of vortex

 private static final float a = (float) 0.01;// strength of suction

 private static final float aP = 10000;// ambient pressure

 private static final float p = (float) 1;// density of air

 // limit of H function

 private static float limitH = calcXInteg(20, 500, 500);

 // value of H function as it approaches infinity

 private static float infiniteH = calcXInteg(calcX(42), 500, 500);

 // Rmax divided by resolution

 private static float deltaR;

 // matrix translation variables

 private static float Xmin, Xmax, Ymin, Ymax, Zmax;

 // maximum range function will be evaluated to

 private static float RMax;

 // variable dictating how many gridpoints Rmax will be split into

 private static final int resolution = 50;

 // 3d array containing v,u,w,pressure,H,Vx,Vy values at each gridpoint

 private static float[][][] V;

 private static float[][][] U;

 private static float[][][] W;

 private static float[][][] P;

 private static float[][][] Vx;

 private static float[][][] Vy;

 private static float[][] H;

 // array in which the particle tracer will store particles' X,Y,Z,i,j,k

 // values at each time step

41

 private static float[] traceVx;

 private static float[] traceVy;

 private static float[] traceVz;

 private static float[] traceX;

 private static float[] traceY;

 private static float[] traceZ;

 // maximum time the particle tracer program will iterate to

 private static float T = 70;

 // time step used by the particle tracer program

 private static float dT = (float) 0.01;

 // the mass of the particle

 private static float Mp = 1;

 // the drag coefficients for the particle in the x,y,z direction

 // respectively

 private static float Cdz = 1;

 private static float Cdx = 1;

 private static float Cdy = 1;

 public static void main(String[] args) {

 // calculates the deltaR for program

 deltaR = (RMax) / resolution;

 System.out.println(deltaR + " " + RMax);

 // sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix

 // calculations

 Xmin = -resolution;

 Xmax = resolution;

 Ymin = -resolution;

 Ymax = resolution;

 Zmax = resolution;

 // initialializes the size for each of the above described arrays

 // When resolution=50 there will be -50 to 50 grid points in x and y

 // axis and 0-50 in z

 // The matrix and set up so that each grid point has a slot in the

array

 System.out.println(infiniteH);

 V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 H = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 //evaluates the integ and stores in H arrays

 genHInteg();

 //for loops calculate the V U W unit vector and pressure

values for each grid point

 //Since [0][0][0] corresponds to (-resolution,-resolution,0)

Xmin is added to the X coordinate and

 //Ymin to the Y coordinate to achieve the neccesary matrix

corrections

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor +

Ymin);

 U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor +

Ymin, zCor);

42

 W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor +

Ymin, zCor);

 //pressure has an additional resolution variable

for use in Euler Integration

 P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor +

Ymin, zCor);

 }

 }

 }

 try {

 System.out.println("Starting data export");

 //calls function that exports data into .csv format

 exportData();

 } catch (IOException e) {

 e.printStackTrace();

 }

 //initilializes the arrays used in particle tracer

 traceX = new float[(int) (T / dT)+1];

 traceY = new float[(int) (T / dT)+1];

 traceZ = new float[(int) (T / dT)+1];

 traceVx = new float[(int) (T / dT)+1];

 traceVy = new float[(int) (T / dT)+1];

 traceVz = new float[(int) (T / dT)+1];

 //starts timer for tracer

 long sT=System.currentTimeMillis();

 //begins particle trace using starting position of

(400,400,1000) and starting velocity of <0,0,0>

 partTrace(400,400,1000,0,0,0);

 //calculates and prints how long the "particle trace" method

took

 System.out.println("Parts Took:

"+(System.currentTimeMillis()-sT));

 try {

 //exports the particle data in .csv format

 System.out.println("Starting particle export");

 exportPartData();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 System.out.println("Done");

 }

 public static void exportPartData() throws IOException {

 //exports data for particles in .csv

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 chooser.showSaveDialog(null);

 String filename = chooser.getSelectedFile().getPath();

 FileWriter writer = new FileWriter(filename + "\\PartData.csv");

 writer.append("Time");

 writer.append(",");

 writer.append("X0");

 writer.append(",");

 writer.append("Y0");

 writer.append(",");

 writer.append("Z0");

 writer.append(",");

43

 writer.append("Vpx");

 writer.append(",");

 writer.append("Vpy");

 writer.append(",");

 writer.append("Vpz");

 writer.append(",");

 writer.append("R");

 writer.append("\n");

 for (float t = 0; t < (100*T); t++) {

 Float calc=t/100;

 writer.append(""+calc);

 writer.append(",");

 calc=traceX[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceY[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceZ[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVx[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVy[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVz[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=(float) Math.sqrt(traceX[(int)

t]*traceX[(int)t]+traceY[(int) t]*traceY[(int)t]);

 writer.append(""+calc);

 writer.append("\n");

 writer.flush();

 }

 writer.close();

 }

 public static void partTrace(float x, float y, float z, float vx, float

vy ,float vz) {

 //sets initial values for the particle

 float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz;

 //initiliazes current time value

 double t = 0;

 //cT, when multiplied by t, calculates the correct array index for

the t value

 int cT=(int) (1/dT);

 //fills 0 slot in arrays with starting conditions

 traceX[(int) (t * cT)] = x0;

 traceY[(int) (t * cT)] = y0;

 traceZ[(int) (t * cT)] = z0;

 traceVx[(int) (t * cT)] = Vpx;

 traceVy[(int) (t * cT)] = Vpy;

 traceVz[(int) (t * cT)] = Vpz;

 //fills starting conditions into an array to be used in RK4

 double stats[]={x0,y0,z0,Vpx,Vpy,Vpz};

44

 //iterates through T values from 0 to T

 do {

 t += dT;

 //uses an fourth order Runge Kutta method to calculate the

x,y,z,vx,vy,vz at the next time step

 stats=rk41(T,dT,stats);

 //stores new x,y,z,Vx,Vy,Vz values into corresponding arrays at

correct index at restarts process till t=T

 traceX[(int) (t * cT)]=(float) stats[0];

 traceY[(int) (t * cT)]=(float) stats[1];

 traceZ[(int) (t * cT)]=(float) stats[2];

 traceVx[(int) (t * cT)]=(float) stats[3];

 traceVy[(int) (t * cT)]=(float) stats[4];

 traceVz[(int) (t * cT)]=(float) stats[5];

 } while (t <= T);

 }

 public static double[] rk41(double x, double h, double[] y) {

 //implements Fourth Order Runge Kutta with derivpd as f(),returns

array with all

 //timestep values x,y,z,Vx,Vy,Vz moved up a step

 double[] f = derivpd(x, y);

 double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1],

 y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a);

 double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1],

 y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a);

 double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2],

 y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] };

 f = derivpd(x + h, a);

 double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6,

 y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6,

 y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6,

 y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6,

 y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6,

 y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 };

 return a;

 }

 public static double[] derivpd(double t,double[]y){

 //gets the i,j,k unit vector values calculated by Kuos model at the

particles current postion

 int ix=(int) ((y[0]/resolution)+Xmax);

 int iy=(int) ((y[1]/resolution)+Ymax);

 int iz=(int) ((y[2]/resolution));

 float Vfx=0,Vfy=0,Vfz=0;

 Vfx=Vx[ix][iy][iz];

45

 Vfy=Vy[ix][iy][iz];

 Vfz=W[ix][iy][iz];

 //calculates the particles next Vx,Vy,Vz

 double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp;

 double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp;

 double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81;

 //returns new x,y,z,Vx,Vy,Vz values for next time step

 double a[]= {y[3],y[4],y[5],Fx,Fy,Fz};

 return a;

 }

 public static void exportData() throws IOException {

 //exports data in .csv

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 chooser.showSaveDialog(null);

 String filename = chooser.getSelectedFile().getPath();

 float v, u, w, angle, pr;

 FileWriter writer = new FileWriter(filename + "\\VectData.csv");

 int counter = 0;

 writer.append("XCor");

 writer.append(",");

 writer.append("YCor");

 writer.append(",");

 writer.append("ZCor");

 writer.append(",");

 writer.append("r");

 writer.append(",");

 writer.append("Vx");

 writer.append(",");

 writer.append("Vy");

 writer.append(",");

 writer.append("Vz");

 writer.append(",");

 writer.append("v");

 writer.append(",");

 writer.append("u");

 writer.append(",");

 writer.append("w");

 writer.append(",");

 writer.append("Pressure");

 writer.append("\n");

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 v = V[xCor][yCor][zCor];

 w = W[xCor][yCor][zCor];

 u = U[xCor][yCor][zCor];

 pr = P[xCor][yCor][zCor];

 if ((xCor + Xmin) * deltaR == 0

 && (yCor + Ymin) * deltaR == 0)

 angle = 0;

 else {

 angle = (float) Math.atan2((yCor + Ymin) * deltaR,

 (xCor + Xmin) * deltaR);

 if (angle < 0)

 angle = (float) ((2 * Math.PI) + angle);

 }

46

 writer.write("" + ((xCor + Xmin) * deltaR));

 writer.write(",");

 writer.write("" + ((yCor + Ymin) * deltaR));

 writer.write(",");

 writer.write("" + (zCor * deltaR));

 writer.write(",");

 float x = (xCor + Xmin) * deltaR;

 float y = (yCor + Ymin) * deltaR;

 Float calc = (float) Math.sqrt(x * x + y * y);

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.cos(angle)) - (v * Math

 .sin(angle)));

 if (calc.equals(Float.NaN))

 System.out.println(u + " " + v + " " + xCor + " "

 + yCor + " " + H[0][0]);

 Vx[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.sin(angle)) + (v * Math

 .cos(angle)));

 if (calc.equals(Float.NaN))

 System.out.println(u + " " + v + " " + xCor + " "

 + yCor + " " + H[0][0]);

 Vy[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 writer.write("" + w);

 writer.write(",");

 writer.write("" + v);

 writer.write(",");

 writer.write("" + u);

 writer.write(",");

 writer.write("" + w);

 writer.write(",");

 writer.write("" + pr);

 writer.write("\n");

 counter++;

 writer.flush();

 }

 }

 }

 writer.close();

 System.out.println(counter);

 }

 public static float calcRMax() {

 //returns RMax value for certain eddy viscosity and suction strength

 return (float) Math.sqrt((20 * 2 * eV) / a);

 }

 public static float calcV(float x1, float y1) {

 //returns V value at gridpoint

 float x = x1 * deltaR;

47

 float y = y1 * deltaR;

 float r = (float) Math.sqrt((x * x) + (y * y));

 r++;

 return (float) ((R / (2 * Math.PI * r)) * (getHInteg(x1 + Xmax, y1

 + Ymax) / infiniteH));

 }

 public static float calcU(float x1, float y1, float z) {

 //returns U value at gridpoint

 float x = x1 * deltaR;

 float y = y1 * deltaR;

 float r = (float) Math.sqrt((x * x) + (y * y));

 r++;

 return (float) ((-a * r) + (((6 * eV) / r) * (1 - Math.pow(Math.E,

 -calcX(r)))));

 }

 public static float calcW(float z1, float x1, float y1) {

 //returns W value at gridpoint

 float z = z1 * deltaR;

 float x = x1 * deltaR;

 float y = y1 * deltaR;

 float r = (float) Math.sqrt((x * x) + (y * y));

 float value = (float) (2 * a * z * (1 - (3 * Math

 .pow(Math.E, -calcX(r)))));

 r++;

 return value;

 }

 public static float calcP(float x1, float y1, float z) {

 //returns pressure value at gridpoint

 float x = x1 * deltaR;

 float y = y1 * deltaR;

 float r = (float) Math.sqrt((x * x) + (y * y));

 r++;

 float val1 = (float) (1 - Math.pow(Math.E, -calcX(r)));

 return aP + calcPresInteg(200, 2000)

 - (((a * a * p) / 2) * ((r * r) + (4 * z * z)))

 - (((18 * p * eV * eV) / (r * r)) * (val1 * val1));

 }

 public static float getHInteg(float xCor, float yCor) {

 //returns value of H function at specified gridpoint

 return H[(int) xCor][(int) yCor];

 }

 public static void genHInteg() {

 //calculates the various ODE values at each gridpoint in quadrant 1

 //takes advantage of axi-symettry to translate to other quandrants

 //stores into necessary arrays

 long sT = System.currentTimeMillis();

 for (int x = 0; x <= resolution; x++) {

 for (int y = 0; y <= resolution; y++) {

 float x1 = (x + Xmin) * deltaR;

 float y1 = (y + Ymin) * deltaR;

 float r = (float) Math.sqrt((x1 * x1) + (y1 * y1));

48

 float X = calcX(r);

 if (X > 20) {

 H[x][y] = limitH;

 } else {

 H[x][y] = calcXInteg(X, 200, 200);

 }

 }

 }

 for (int x = 0; x < resolution; x++) {

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 H[x][y] = H[x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x >= resolution; x--) {

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 H[x][y] = H[(resolution * 2) - x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x > resolution; x--) {

 for (int y = 0; y < resolution; y++) {

 H[x][y] = H[(resolution * 2) - x][y];

 }

 }

 System.out.println("H took: " + (System.currentTimeMillis() - sT));

 }

 public static float calcXInteg(float x, float resolution, float secRes) {

 //integrate equation at given x and uses resolution variables to

determine size of Euler integration blocks

 if (x == 0)

 return 0;

 float total = 0;

 float dR1 = x / resolution;

 for (int n = 2; n <= resolution; n++) {

 float r = (n) * dR1;

 float rn = ((n - 1)) * dR1;

 float integ = (float) (0.5 * ((Math.pow(Math.E,

 FunctionT(r, secRes))) + (Math.pow(Math.E,

 FunctionT(rn, secRes)))) * dR1);

 total += integ;

 }

 return total;

 }

 private static float FunctionT(float t, float resolution) {

 //integrate equation at given x and uses resolution variables to

determine size of Euler integration blocks

 float total = 0;

 float dR = t / resolution;

 for (int n = 2; n <= resolution; n++) {

 float r = (n) * dR;

 float rn = ((n - 1)) * dR;

 float integ = (float) (0.5 * (((1 - Math.pow(Math.E, -r)) / r) +

((1 - Math

 .pow(Math.E, -rn)) / rn)) * dR);

49

 total += (3. * integ);

 }

 total = total - t;

 return total;

 }

 public static float calcPresInteg(float R, int resolution) {

 //integrate equation at given R and uses resolution variables to

determine size of Euler integration blocks

 //returns integral for use in calculating pressure

 float total = 0;

 float DR = R / resolution;

 for (int n = 2; n < resolution; n++) {

 float r = n * DR;

 float rn = (n - 1) * DR;

 float integ = (float) (0.5 * (((5 * 5) / r) + ((5 * 5) / rn)) *

DR);

 total += integ;

 }

 return (float) (1.5 * total);

 }

 public static float calcX(float r) {

 //returns X for given r

 return (a * r * r) / (2 * eV);

 }

}

KuoTest.java

import java.io.FileWriter;

import java.io.IOException;

import java.math.*;

import javax.swing.JFileChooser;

//java implentation of Kuo's equations and Lagrangian particle tracer

public class KouTest {

 // eddy viscosity

 private static final float eV = 5;

 private static JFileChooser chooser = new JFileChooser();

 // circulation strength of vortex

 private static final float R = 7500;

 // suction strength of vortex

 private static final float b = (float) 0.01;

 // ambient pressure

 private static final float aP = 10000;

 //density

 private static final float p = (float) 1;

 //Program will calculate x,y,z values between -RMax to RMax

 private static final float RMax=1000;

 //number of grid points between origin and maximum

 private static final int resolution = 50;

 //distance between each grid point ie. RMax/resolution

50

 private static float deltaR;

 //symbolizes -resolution,resolution,-resolution,resolution,resolution

respectively

 //acts as syntacticly friendly replacer for resolution during matrix

corrections

 private static float Xmin, Xmax, Ymin, Ymax, Zmax;

 //3d array containing all the V unit vector values at each grid point

 private static float[][][] V;

 //3d array containing all the U unit vector values at each grid point

 private static float[][][] U;

 //3d array containing all the W unit vector values at each grid point

 private static float[][][] W;

 //3d array containing all the i unit vector values at each grid point

 private static float[][][] Vx;

 //3d array containing all the j unit vector values at each grid point

 private static float[][][] Vy;

 //3d array containing all the pressure values at each grid point

 private static float[][][] P;

 //2d arrays containing all values of the F, F', and M ODEs at each grid

point

 private static float[][] F, dF, M;

 //array in which our shooting method will store initial values for RK4

method

 private static double[] shoot;

 //array in which the particle tracer will store particles' X,Y,Z,i,j,k

values at each time step

 private static float[] traceX;

 private static float[] traceY;

 private static float[] traceZ;

 private static float[] traceVx;

 private static float[] traceVy;

 private static float[] traceVz;

 //maximum time the particle tracer program will iterate to

 private static float T = 70;

 //time step used by the particle tracer program

 private static float dT = (float) 0.01;

 //the mass of the particle

 private static float Mp=1;

 //the drag coefficients for the particle in the x,y,z direction

respectively

 private static float Cdz=1;

 private static float Cdx=1;

 private static float Cdy=1;

 public static void main(String[] args) {

 //calculates the deltaR for program

 deltaR = (RMax) / resolution;

 System.out.println(deltaR + " " + RMax);

 //sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix

calculations

 Xmin = -resolution;

 Xmax = resolution;

 Ymin = -resolution;

 Ymax = resolution;

 Zmax = resolution;

 //initialializes the size for each of the above described arrays

 //When resolution=50 there will be -50 to 50 grid points in x and y

axis and 0-50 in z

51

 //The matrix and set up so that each grid point has a slot in the

array

 V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax];

 F = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 dF = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 M = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 System.out.println("generating velocity ODEs...");

 //uses shooting method to initialize initial value which will be

stored in shoot

 genShoot();

 //evaluates the ODE and stores in F,dF,M arrays

 calcODE();

 //for loops calculate the V U W unit vector and pressure values for

each grid point

 //Since [0][0][0] corresponds to (-resolution,-resolution,0) Xmin is

added to the X coordinate and

 //Ymin to the Y coordinate to achieve the neccesary matrix

corrections

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor + Ymin,

zCor);

 U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor + Ymin,

zCor);

 W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor + Ymin,

zCor);

 //pressure has an additional resolution variable for use

in Euler Integration

 P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor + Ymin,

zCor,200);

 }

 }

 }

 try {

 System.out.println("Starting data export");

 //calls function that exports data into .csv format

 exportData();

 } catch (IOException e) {

 e.printStackTrace();

 }

 //initilializes the arrays used in particle tracer

 traceX = new float[(int) (T / dT)+1];

 traceY = new float[(int) (T / dT)+1];

 traceZ = new float[(int) (T / dT)+1];

 traceVx = new float[(int) (T / dT)+1];

 traceVy = new float[(int) (T / dT)+1];

 traceVz = new float[(int) (T / dT)+1];

 //starts timer for tracer

 long sT=System.currentTimeMillis();

 //begins particle trace using starting position of (400,400,1000) and

starting velocity of <0,0,0>

52

 partTrace(400,400,1000,0,0,0);

 //calculates and prints how long the "particle trace" method took

 System.out.println("Parts Took: "+(System.currentTimeMillis()-sT));

 try {

 //exports the particle data in .csv format

 System.out.println("Starting particle export");

 exportPartData();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 System.out.println("Done");

 }

 public static void exportPartData() throws IOException {

 //exports data for particles in .csv

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 chooser.showSaveDialog(null);

 String filename = chooser.getSelectedFile().getPath();

 FileWriter writer = new FileWriter(filename + "\\PartData.csv");

 writer.append("Time");

 writer.append(",");

 writer.append("X0");

 writer.append(",");

 writer.append("Y0");

 writer.append(",");

 writer.append("Z0");

 writer.append(",");

 writer.append("Vpx");

 writer.append(",");

 writer.append("Vpy");

 writer.append(",");

 writer.append("Vpz");

 writer.append(",");

 writer.append("R");

 writer.append("\n");

 for (float t = 0; t < (100*T); t++) {

 Float calc=t/100;

 writer.append(""+calc);

 writer.append(",");

 calc=traceX[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceY[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceZ[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVx[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVy[(int) t];

 writer.append(""+calc);

 writer.append(",");

 calc=traceVz[(int) t];

 writer.append(""+calc);

 writer.append(",");

53

 calc=(float) Math.sqrt(traceX[(int)

t]*traceX[(int)t]+traceY[(int) t]*traceY[(int)t]);

 writer.append(""+calc);

 writer.append("\n");

 writer.flush();

 }

 writer.close();

 }

 public static void partTrace(float x, float y, float z, float vx, float

vy ,float vz) {

 //sets initial values for the particle

 float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz;

 //initiliazes current time value

 double t = 0;

 //cT, when multiplied by t, calculates the correct array index for

the t value

 int cT=(int) (1/dT);

 //fills 0 slot in arrays with starting conditions

 traceX[(int) (t * cT)] = x0;

 traceY[(int) (t * cT)] = y0;

 traceZ[(int) (t * cT)] = z0;

 traceVx[(int) (t * cT)] = Vpx;

 traceVy[(int) (t * cT)] = Vpy;

 traceVz[(int) (t * cT)] = Vpz;

 //fills starting conditions into an array to be used in RK4

 double stats[]={x0,y0,z0,Vpx,Vpy,Vpz};

 //iterates through T values from 0 to T

 do {

 t += dT;

 //uses an fourth order Runge Kutta method to calculate the

x,y,z,vx,vy,vz at the next time step

 stats=rk41(T,dT,stats);

 //stores new x,y,z,Vx,Vy,Vz values into corresponding arrays at

correct index at restarts process till t=T

 traceX[(int) (t * cT)]=(float) stats[0];

 traceY[(int) (t * cT)]=(float) stats[1];

 traceZ[(int) (t * cT)]=(float) stats[2];

 traceVx[(int) (t * cT)]=(float) stats[3];

 traceVy[(int) (t * cT)]=(float) stats[4];

 traceVz[(int) (t * cT)]=(float) stats[5];

 } while (t <= T);

 }

 public static double[] rk41(double x, double h, double[] y) {

 //implements Fourth Order Runge Kutta with derivpd as f(),returns

array with all

 //timestep values x,y,z,Vx,Vy,Vz moved up a step

 double[] f = derivpd(x, y);

 double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1],

 y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a);

 double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

54

 a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1],

 y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a);

 double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2],

 y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] };

 f = derivpd(x + h, a);

 double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6,

 y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6,

 y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6,

 y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6,

 y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6,

 y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 };

 return a;

 }

 public static double[] derivpd(double t,double[]y){

 //gets the i,j,k unit vector values calculated by Kuos model at the

particles current postion

 int ix=(int) ((y[0]/resolution)+Xmax);

 int iy=(int) ((y[1]/resolution)+Ymax);

 int iz=(int) ((y[2]/resolution));

 float Vfx=0,Vfy=0,Vfz=0;

 Vfx=Vx[ix][iy][iz];

 Vfy=Vy[ix][iy][iz];

 Vfz=W[ix][iy][iz];

 //calculates the particles next Vx,Vy,Vz

 double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp;

 double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp;

 double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81;

 //returns new x,y,z,Vx,Vy,Vz values for next time step

 double a[]= {y[3],y[4],y[5],Fx,Fy,Fz};

 return a;

 }

 public static void exportData() throws IOException {

 //exports data using the .csv file format

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 chooser.showSaveDialog(null);

 String filename = chooser.getSelectedFile().getPath();

 float v, u, w, angle, pr, f, df, m;

 FileWriter writer = new FileWriter(filename + "\\VectData.csv");

 int counter = 0;

 writer.append("XCor");

 writer.append(",");

 writer.append("YCor");

 writer.append(",");

 writer.append("ZCor");

 writer.append(",");

 writer.append("r");

 writer.append(",");

 writer.append("Vx");

 writer.append(",");

 writer.append("Vy");

 writer.append(",");

55

 writer.append("Vz");

 writer.append(",");

 writer.append("v");

 writer.append(",");

 writer.append("u");

 writer.append(",");

 writer.append("w");

 writer.append(",");

 writer.append("f");

 writer.append(",");

 writer.append("df");

 writer.append(",");

 writer.append("m");

 writer.append(",");

 writer.append("Pressure");

 writer.append("\n");

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 v = V[xCor][yCor][zCor];

 w = W[xCor][yCor][zCor];

 u = U[xCor][yCor][zCor];

 pr = P[xCor][yCor][zCor];

 f = F[xCor][yCor];

 df = dF[xCor][yCor];

 m = M[xCor][yCor];

 if ((xCor + Xmin) * deltaR == 0

 && (yCor + Ymin) * deltaR == 0)

 angle = 0;

 else {

 angle = (float) Math.atan2((yCor + Ymin) * deltaR,

 (xCor + Xmin) * deltaR);

 if (angle < 0)

 angle = (float) ((2 * Math.PI) + angle);

 }

 writer.write("" + ((xCor + Xmin) * deltaR));

 writer.write(",");

 writer.write("" + ((yCor + Ymin) * deltaR));

 writer.write(",");

 writer.write("" + (zCor * deltaR));

 writer.write(",");

 float x = (xCor + Xmin) * deltaR;

 float y = (yCor + Ymin) * deltaR;

 Float calc = (float) Math.sqrt(x * x + y * y);

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.cos(angle)) - (v * Math

 .sin(angle)));

 Vx[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.sin(angle)) + (v * Math

 .cos(angle)));

 Vy[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 writer.write("" + w);

56

 writer.write(",");

 writer.write("" + v);

 writer.write(",");

 writer.write("" + u);

 writer.write(",");

 writer.write("" + w);

 writer.write(",");

 writer.append("" + f);

 writer.append(",");

 writer.append("" + df);

 writer.append(",");

 writer.append("" + m);

 writer.append(",");

 writer.write("" + pr);

 writer.write("\n");

 counter++;

 writer.flush();

 }

 }

 }

 writer.close();

 System.out.println(counter);

 }

 public static float calcP(float x1, float y1, float z1, int res) {

 //calculates pressure at each x,y,z gridpoint, res dictates

"resolution" of Euler integration

 float x = deltaR * x1, y = deltaR * y1, z = deltaR * z1;

 float r = (float) Math.sqrt(x * x + y * y);

 if (r == 0)

 r += 0.1;

 float X = calcX(r);

 float total = 0;

 float dR = X / res;

 for (int x2 = 2; x2 < res + 1; x2++) {

 float b = x2 * dR;

 float bn = (x2 - 1) * dR;

 float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 float integ = (float) (0.5 * ((m * m / (b * b)) + (m * m / (bn *

bn))) * dR);

 total += integ;

 }

 return aP + ((b * p * R * R) / (8 * eV)) * total;

 }

 public static float calcV(float x1, float y1, float z1) {

 //returns V value at each gridpoint

 float x = deltaR * x1, y = deltaR * y1;

 float r = (float) Math.sqrt(x * x + y * y);

 float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 if (r == 0)

 r += 0.1;

 if (x == 0 && y == -1000 && z1 == 0)

 System.out.println(m + " " + x1 + " " + y1 + " " + ((R / r) *

m));

57

 return (R / r) * m;

 }

 public static float calcU(float x1, float y1, float z1) {

 //returns U value at each gridpoint

 float x = deltaR * x1, y = deltaR * y1;

 float r = (float) Math.sqrt(x * x + y * y);

 float f = F[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 if (r == 0)

 r += 0.1;

 return (-10 * eV / r) * f;

 }

 public static float calcW(float x1, float y1, float z1) {

 //returns W value at each gridpoint

 float z = deltaR * z1;

 float df = dF[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 return b * z * df;

 }

 public static void calcODE() {

 //calculates the various ODE values at each gridpoint in quadrant 1

 //takes advantage of axi-symettry to translate to other quandrants

 //stores into necessary arrays

 for (int x = 0; x <= resolution; x++) {

 for (int y = 0; y <= resolution; y++) {

 float x1 = (x + Xmin) * deltaR;

 float y1 = (y + Ymin) * deltaR;

 float r = (float) Math.sqrt((x1 * x1) + (y1 * y1));

 float[] a = calcODE(calcX(r));

 F[x][y] = a[0];

 dF[x][y] = a[1];

 M[x][y] = a[3];

 }

 }

 for (int x = 0; x <= resolution; x++) {

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 F[x][y] = F[x][(resolution * 2) - y];

 dF[x][y] = dF[x][(resolution * 2) - y];

 M[x][y] = M[x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x >= resolution; x--) {

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 F[x][y] = F[(resolution * 2) - x][(resolution * 2) - y];

 dF[x][y] = dF[(resolution * 2) - x][(resolution * 2) - y];

 M[x][y] = M[(resolution * 2) - x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x >= resolution; x--) {

 for (int y = 0; y <= resolution; y++) {

 F[x][y] = F[(resolution * 2) - x][y];

 dF[x][y] = dF[(resolution * 2) - x][y];

 M[x][y] = M[(resolution * 2) - x][y];

58

 }

 }

 }

 public static float calcX(float r) {

 //returns the x value when given r

 return b * r * r / (4 * eV);

 }

 public static float[] calcODE(float X) {

 //iterates through X and uses RK4 loop to get correct ODE values and

return array in [F,F',F'',m,m'] format

 double x, dx;

 x = 0.01;

 dx = b / eV;

 double[] y = shoot;

 while (x < X) {

 x += dx;

 y = rk4(x, dx, y);

 }

 float[] a = new float[y.length];

 for (int i = 0; i < y.length; i++) {

 a[i] = (float) y[i];

 }

 return a;

 }

 public static double[] rk4(double x, double h, double[] y) {

 //solves ODE used in Kuo's equation through RK4 methodology

 double[] f = integ(x, y);

 double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1],

 y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] };

 f = integ(x + 0.5 * h, a);

 double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1],

 y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] };

 f = integ(x + 0.5 * h, a);

 double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2],

 y[3] + k3[3], y[4] + k3[4] };

 f = integ(x + h, a);

 double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6,

 y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6,

 y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6,

 y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6,

 y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6 };

 return a;

 }

59

 public static double[] integ(double x, double[] y) {

 //represents ODE fed as f() into RK4

 double F = y[0];

 double dF = y[1];

 double ddF = y[2];

 double dddF = -(((F + 1) * ddF) - (dF * (dF - 1))) / x;

 double dM = y[4];

 double ddM = (-F * dM) / x;

 return new double[] { dF, ddF, dddF, dM, ddM };

 }

 public static void genShoot() {

 //uses various shooting methods to find correct initial values to

store in shoot array

 //uses bisect algorithm

 double o = bisect(-0.9, -0.8);

 double o1 = o * (o - 1);

 double o2 = bisect1(0.1, 0.13, o, o1);

 double yinit[] = { 0, o, o1, 0, o2 };

 shoot = yinit;

 System.out.println("Shooter: " + o + " " + o1 + " " + o2);

 }

 public static double bisect(double minVal, double maxVal) {

 //bisection algorithm specially configured to approximate F value

 double x = minVal;

 double fmin = F(minVal);

 double tol = 0.003;

 int maxiter = 100;

 int k = 0;

 while (k <= maxiter) {

 x = (minVal + maxVal) / 2.0;

 double fx = F(x);

 k += 1;

 if ((Math.abs(maxVal - minVal) / 2.0) < tol)

 break;

 if (sign(fmin) == sign(fx)) {

 minVal = x;

 fmin = fx;

 } else

 maxVal = x;

 }

 if (k > maxiter)

 System.err.println("Exceeded Maxiter");

 return x;

 }

 public static double bisect1(double minVal, double maxVal, double o1,

 double o2) {

 //bisection algorithm specially configured to approximate m value

 double x = minVal;

 double fmin = M(minVal, o1, o2);

 double tol = 0.003;

 int maxiter = 100;

 int k = 0;

 while (k <= maxiter) {

 x = (minVal + maxVal) / 2.0;

60

 double fx = M(x, o1, o2);

 k += 1;

 if ((Math.abs(maxVal - minVal) / 2.0) < tol)

 break;

 if (sign(fmin) == sign(fx)) {

 minVal = x;

 fmin = fx;

 } else

 maxVal = x;

 }

 if (k > maxiter)

 System.err.println("Exceeded Maxiter");

 return x;

 }

 public static double F(double e) {

 //returns F as requested by first bisect method

 double f1 = e;

 double f2 = f1 * (f1 - 1);

 double yinit[] = { 0.0, f1, f2, 0.0, 0.12 };

 yinit = calcODE1(yinit, 200);

 return yinit[1];

 }

 public static double M(double e, double o1, double o2) {

 //returns m as requested by second bisect method

 double m1 = e;

 double yinit[] = { 0.0, o1, o2, 0.0, m1 };

 yinit = calcODE1(yinit, 200);

 return yinit[4];

 }

 public static double[] calcODE1(double y[], double X) {

 //modified method of previous calcODE method specifically made to

work with bisect methods

 double x = 0.01;

 double dx = 0.01;

 while (x < X) {

 x += dx;

 y = rk4(x, dx, y);

 }

 return y;

 }

 public static int sign(double x) {

 //returns int depending on sign of x value

 if (x < 0)

 return -1;

 else if (x > 0)

 return 1;

 else

 return 0;

 }

}

61

KuoTestMP.java

import java.io.FileWriter;

import java.io.IOException;

import java.math.*;

import javax.swing.JFileChooser;

//implementation of Kuo's equations in Java utilizing Multithraeding with

particles

public class KuoTestMP {

 // eddy viscosity

 private static final float eV = 5;

 private static JFileChooser chooser = new JFileChooser();

 // circulation strength of vortex

 private static final float R = 7500;

 // suction strength of vortex

 private static final float b = (float) 0.01;

 // ambient pressure

 private static final float aP = 10000;

 //density

 private static final float p = (float) 1;

 //Program will calculate x,y,z values between -RMax to RMax

 private static final float RMax=1000;

 //number of grid points between origin and maximum

 private static final int resolution = 50;

 //distance between each grid point ie. RMax/resolution

 private static float deltaR;

 //symbolizes -resolution,resolution,-resolution,resolution,resolution

respectively

 //acts as syntacticly friendly replacer for resolution during matrix

corrections

 private static float Xmin, Xmax, Ymin, Ymax, Zmax;

 //3d array containing all the V unit vector values at each grid point

 private static float[][][] V;

 //3d array containing all the U unit vector values at each grid point

 private static float[][][] U;

 //3d array containing all the W unit vector values at each grid point

 private static float[][][] W;

 //3d array containing all the i unit vector values at each grid point

 private static float[][][] Vx;

 //3d array containing all the j unit vector values at each grid point

 private static float[][][] Vy;

 //3d array containing all the pressure values at each grid point

 private static float[][][] P;

 //2d arrays containing all values of the F, F', and M ODEs at each grid

point

 private static float[][] F, dF, M;

 //array in which our shooting method will store initial values for RK4

method

 private static double[] shoot;

 //maximum time the particle tracer program will iterate to

 private static float T = 250;

 //time step used by the particle tracer program

 private static float dT = (float) 0.01;

 //filepath name for use in exports

 private static String file;

62

 public static void main(String[] args) {

 //calculates the deltaR for program

 deltaR = (RMax) / resolution;

 System.out.println(deltaR + " " + RMax);

 //sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix

calculations

 Xmin = -resolution;

 Xmax = resolution;

 Ymin = -resolution;

 Ymax = resolution;

 Zmax = resolution;

 //initialializes the size for each of the above described

arrays

 //When resolution=50 there will be -50 to 50 grid points in x

and y axis and 0-50 in z

 //The matrix and set up so that each grid point has a slot in

the array

 V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int)

Zmax];

 F = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 dF = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 M = new float[(int) (Xmax * 2)][(int) (Ymax * 2)];

 System.out.println("generating velocity integrals...");

 //uses shooting method to initialize initial value which will

be stored in shoot

 genShoot();

 //evaluates the ODE and stores in F,dF,M arrays

 genODE();

 //for loops calculate the V U W unit vector and pressure

values for each grid point

 //Since [0][0][0] corresponds to (-resolution,-resolution,0)

Xmin is added to the X coordinate and

 //Ymin to the Y coordinate to achieve the neccesary matrix

corrections

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor +

Ymin, zCor);

 U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor +

Ymin, zCor);

 W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor +

Ymin, zCor);

 //pressure has an additional resolution variable

for use in Euler Integration

63

 P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor +

Ymin, zCor,200);

 }

 }

 }

 try {

 System.out.println("Starting data export");

 //calls function that exports data into .csv format

 exportData();

 } catch (IOException e) {

 e.printStackTrace();

 }

 //each of the following initializes a new thread object with a

runnable that will execute the operations

 //to trace one individual particle

 //they run simultaneously resulting in speed up

 Thread t = new Thread(new Runnable() {

 public void run() {

 try {

 partTrace(50, 50, 990, 0, 0,

0,1,(float)0.1,(float)0.1,(float)0.1,1);

 } catch (IOException e) {

 }

 }

 });

 t.start();

 Thread t1 = new Thread(new Runnable() {

 public void run() {

 try {

 partTrace(50, 50, 990, 0, 0,

0,1,(float)0.25,(float)0.25,(float)0.25,2);

 } catch (IOException e) {

 }

 }

 });

 t1.start();

 Thread t2 = new Thread(new Runnable() {

 public void run() {

 try {

 partTrace(50, 50, 990, 0, 0,

0,10,(float)0.5,(float)0.5,(float)0.5,3);

 } catch (IOException e) {

 }

 }

 });

 t2.start();

 Thread t3 = new Thread(new Runnable() {

 public void run() {

 try {

 partTrace(50, 50, 990, 0, 0,

0,10,(float)1,(float)1,(float)1,4);

 } catch (IOException e) {

 }

64

 }

 });

 t3.start();

 Thread t4 = new Thread(new Runnable() {

 public void run() {

 try {

 partTrace(50, 50, 990, 0, 0,

0,100,(float)3.2,(float)3.2,(float)3.2,5);

 } catch (IOException e) {

 }

 }

 });

 t4.start();

 }

 public static void partTrace(float x, float y, float z, float vx, float

vz,

 float vy,float Mp, float Cdx,float Cdy,float Cdz, int

partCounter) throws IOException {

 //multithreaded version of partTrace method used in KuoTest

 //uses Lagrangian particle equations to calculate motion of particle

given surrounding volecities

 //cheif difference is this loop uses compartmentalized variables

rather than global to allow for multithreading

 float[] traceX = new float[(int) (T / dT) + 1];

 float[] traceY = new float[(int) (T / dT) + 1];

 float[] traceZ = new float[(int) (T / dT) + 1];

 float[] traceVx = new float[(int) (T / dT) + 1];

 float[] traceVy = new float[(int) (T / dT) + 1];

 float[] traceVz = new float[(int) (T / dT) + 1];

 long sT = System.currentTimeMillis();

 //sets initial values for the particle

 float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz;

 //initiliazes current time value

 double t = 0;

 //cT, when multiplied by t, calculates the correct array

index for the t value

 int cT=(int) (1/dT);

 //fills 0 slot in arrays with starting conditions

 traceX[(int) (t * cT)] = x0;

 traceY[(int) (t * cT)] = y0;

 traceZ[(int) (t * cT)] = z0;

 traceVx[(int) (t * cT)] = Vpx;

 traceVy[(int) (t * cT)] = Vpy;

 traceVz[(int) (t * cT)] = Vpz;

 //fills starting conditions into an array to be used in RK4

 double stats[]={x0,y0,z0,Vpx,Vpy,Vpz};

 //iterates through T values from 0 to T

 do {

 t += dT;

 //uses an fourth order Runge Kutta method to calculate

the x,y,z,vx,vy,vz at the next time step

 stats=rk41(T,dT,stats,Mp,Cdx,Cdy,Cdz);

 //stores new x,y,z,Vx,Vy,Vz values into corresponding

arrays at correct index at restarts process till t=T

 traceX[(int) (t * cT)]=(float) stats[0];

 traceY[(int) (t * cT)]=(float) stats[1];

65

 traceZ[(int) (t * cT)]=(float) stats[2];

 traceVx[(int) (t * cT)]=(float) stats[3];

 traceVy[(int) (t * cT)]=(float) stats[4];

 traceVz[(int) (t * cT)]=(float) stats[5];

 } while (t <= T);

 System.out.println("Part trace took: "

 + (System.currentTimeMillis() - sT)+" "+partCounter);

 FileWriter writer = new FileWriter(file + "\\PartData" + partCounter

 + ".csv");

 writer.append("Time");

 writer.append(",");

 writer.append("X0");

 writer.append(",");

 writer.append("Y0");

 writer.append(",");

 writer.append("Z0");

 writer.append(",");

 writer.append("Vpx");

 writer.append(",");

 writer.append("Vpy");

 writer.append(",");

 writer.append("Vpz");

 writer.append(",");

 writer.append("R");

 writer.append("\n");

 for (float i = 0; i < (100 * T); i++) {

 Float calc = i / 100;

 writer.append("" + calc);

 writer.append(",");

 calc = traceX[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = traceY[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = traceZ[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = traceVx[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = traceVy[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = traceVz[(int) i];

 writer.append("" + calc);

 writer.append(",");

 calc = (float) Math.sqrt(traceVx[(int) i] * traceVx[(int) i]

 + traceVy[(int) i] * traceVy[(int) i]);

 writer.append("" + calc);

 writer.append("\n");

 writer.flush();

 }

 writer.close();

 }

66

 public static double[] rk41(double x, double h, double[] y,float Mp,

float Cdx, float Cdy, float Cdz) {

 //implements Fourth Order Runge Kutta with derivpd as f(),returns

array with all

 //timestep values x,y,z,Vx,Vy,Vz moved up a step

 double[] f = derivpd(x, y,Mp,Cdx,Cdy,Cdz);

 double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1],

 y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a,Mp,Cdx,Cdy,Cdz);

 double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1],

 y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4],

 y[5] + 0.5 * k[5] };

 f = derivpd(x + 0.5 * h, a,Mp,Cdx,Cdy,Cdz);

 double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2],

 y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] };

 f = derivpd(x + h, a,Mp,Cdx,Cdy,Cdz);

 double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4], h * f[5] };

 a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6,

 y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6,

 y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6,

 y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6,

 y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6,

 y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 };

 return a;

 }

 public static double[] derivpd(double t, double[] y,float Mp, float

Cdx,float Cdy, float Cdz) {

 //gets the i,j,k unit vector values calculated by Kuos model at the

particles current postion

 int ix=(int) ((y[0]/resolution)+Xmax);

 int iy=(int) ((y[1]/resolution)+Ymax);

 int iz=(int) ((y[2]/resolution));

 float Vfx=0,Vfy=0,Vfz=0;

 Vfx=Vx[ix][iy][iz];

 Vfy=Vy[ix][iy][iz];

 Vfz=W[ix][iy][iz];

 //calculates the particles next Vx,Vy,Vz

 double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp;

 double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp;

 double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81;

 //returns new x,y,z,Vx,Vy,Vz values for next time step

 double a[]= {y[3],y[4],y[5],Fx,Fy,Fz};

 return a;

 }

 public static void exportData() throws IOException {

 //exports data using the .csv file format

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

67

 chooser.showSaveDialog(null);

 file = chooser.getSelectedFile().getPath();

 float v, u, w, angle, pr, f, df, m;

 FileWriter writer = new FileWriter(file + "\\VectData.csv");

 int counter = 0;

 writer.append("XCor");

 writer.append(",");

 writer.append("YCor");

 writer.append(",");

 writer.append("ZCor");

 writer.append(",");

 writer.append("r");

 writer.append(",");

 writer.append("Vx");

 writer.append(",");

 writer.append("Vy");

 writer.append(",");

 writer.append("Vz");

 writer.append(",");

 writer.append("v");

 writer.append(",");

 writer.append("u");

 writer.append(",");

 writer.append("w");

 writer.append(",");

 writer.append("f");

 writer.append(",");

 writer.append("df");

 writer.append(",");

 writer.append("m");

 writer.append(",");

 writer.append("Pressure");

 writer.append("\n");

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 for (int xCor = 0; xCor < (2 * Xmax); xCor++) {

 v = V[xCor][yCor][zCor];

 w = W[xCor][yCor][zCor];

 u = U[xCor][yCor][zCor];

 pr = P[xCor][yCor][zCor];

 f = F[xCor][yCor];

 df = dF[xCor][yCor];

 m = M[xCor][yCor];

 if ((xCor + Xmin) * deltaR == 0

 && (yCor + Ymin) * deltaR == 0)

 angle = 0;

 else {

 angle = (float) Math.atan2((yCor + Ymin) * deltaR,

 (xCor + Xmin) * deltaR);

 if (angle < 0)

 angle = (float) ((2 * Math.PI) + angle);

 }

 writer.write("" + ((xCor + Xmin) * deltaR));

 writer.write(",");

 writer.write("" + ((yCor + Ymin) * deltaR));

 writer.write(",");

 writer.write("" + (zCor * deltaR));

68

 writer.write(",");

 float x = (xCor + Xmin) * deltaR;

 float y = (yCor + Ymin) * deltaR;

 Float calc = (float) Math.sqrt(x * x + y * y);

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.cos(angle)) - (v * Math

 .sin(angle)));

 Vx[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 calc = (float) ((u * Math.sin(angle)) + (v * Math

 .cos(angle)));

 Vy[xCor][yCor][zCor] = calc;

 writer.write("" + calc);

 writer.write(",");

 writer.write("" + w);

 writer.write(",");

 writer.write("" + v);

 writer.write(",");

 writer.write("" + u);

 writer.write(",");

 writer.write("" + w);

 writer.write(",");

 writer.append("" + f);

 writer.append(",");

 writer.append("" + df);

 writer.append(",");

 writer.append("" + m);

 writer.append(",");

 writer.write("" + pr);

 writer.write("\n");

 counter++;

 writer.flush();

 }

 }

 }

 writer.close();

 System.out.println(counter);

 }

 public static float calcP(float x1, float y1, float z1, int res) {

 //calculates pressure at each x,y,z gridpoint, res dictates

"resolution" of Euler integration

 float x = deltaR * x1, y = deltaR * y1, z = deltaR * z1;

 float r = (float) Math.sqrt(x * x + y * y);

 if (r == 0)

 r += 0.1;

 float X = calcX(r);

 float total = 0;

 float dR = X / res;

 for (int x2 = 2; x2 < res + 1; x2++) {

 float b = x2 * dR;

 float bn = (x2 - 1) * dR;

 float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

69

 float integ = (float) (0.5 * ((m * m / (b * b)) + (m * m / (bn *

bn))) * dR);

 total += integ;

 }

 return aP + ((b * p * R * R) / (8 * eV)) * total;

 }

 public static float calcV(float x1, float y1, float z1) {

 //returns V value at each gridpoint

 float x = deltaR * x1, y = deltaR * y1;

 float r = (float) Math.sqrt(x * x + y * y);

 float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 if (r == 0)

 r += 0.1;

 if (x == 0 && y == -1000 && z1 == 0)

 System.out.println(m + " " + x1 + " " + y1 + " " + ((R / r) *

m));

 return (R / r) * m;

 }

 public static float calcU(float x1, float y1, float z1) {

 //returns U value at each gridpoint

 float x = deltaR * x1, y = deltaR * y1;

 float r = (float) Math.sqrt(x * x + y * y);

 float f = F[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 if (r == 0)

 r += 0.1;

 return (-10 * eV / r) * f;

 }

 public static float calcW(float x1, float y1, float z1) {

 //returns W value at each gridpoint

 float z = deltaR * z1;

 float df = dF[(int) (x1 + Xmax)][(int) (y1 + Ymax)];

 return b * z * df;

 }

 public static void genODE() {

 //calculates the various ODE values at each gridpoint in quadrant 1

 //takes advantage of axi-symettry to translate to other quandrants

 //stores into necessary arrays

 for (int x = 0; x <= resolution; x++) {

 for (int y = 0; y <= resolution; y++) {

 float x1 = (x + Xmin) * deltaR;

 float y1 = (y + Ymin) * deltaR;

 float r = (float) Math.sqrt((x1 * x1) + (y1 * y1));

 float[] a = calcODE(calcX(r));

 F[x][y] = a[0];

 dF[x][y] = a[1];

 M[x][y] = a[3];

 // if(x==y)

 // System.out.println("X "+x1+" Y ="+y1+" "+F[x][y]+"

"+calcX(r)+" "+r);

 }

 }

 for (int x = 0; x <= resolution; x++) {

70

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 F[x][y] = F[x][(resolution * 2) - y];

 dF[x][y] = dF[x][(resolution * 2) - y];

 M[x][y] = M[x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x >= resolution; x--) {

 for (int y = (resolution * 2) - 1; y >= resolution; y--) {

 F[x][y] = F[(resolution * 2) - x][(resolution * 2) - y];

 dF[x][y] = dF[(resolution * 2) - x][(resolution * 2) - y];

 M[x][y] = M[(resolution * 2) - x][(resolution * 2) - y];

 }

 }

 for (int x = (resolution * 2) - 1; x >= resolution; x--) {

 for (int y = 0; y <= resolution; y++) {

 F[x][y] = F[(resolution * 2) - x][y];

 dF[x][y] = dF[(resolution * 2) - x][y];

 M[x][y] = M[(resolution * 2) - x][y];

 }

 }

 }

 public static float calcX(float r) {

 //returns the x value when given r

 return b * r * r / (4 * eV);

 }

 public static float[] calcODE(float X) {

 //iterates through X and uses RK4 loop to get correct ODE values and

return array in [F,F',F'',m,m'] format

 double x, dx;

 x = 0.01;

 dx = b / eV;

 double[] y = shoot;

 while (x < X) {

 x += dx;

 y = rk4(x, dx, y);

 }

 float[] a = new float[y.length];

 for (int i = 0; i < y.length; i++) {

 a[i] = (float) y[i];

 }

 return a;

 }

 public static double[] rk4(double x, double h, double[] y) {

 //solves ODE used in Kuo's equation through RK4 methodology

 double[] f = integ(x, y);

 double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1],

 y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] };

 f = integ(x + 0.5 * h, a);

71

 double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1],

 y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] };

 f = integ(x + 0.5 * h, a);

 double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2],

 y[3] + k3[3], y[4] + k3[4] };

 f = integ(x + h, a);

 double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3],

 h * f[4] };

 a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6,

 y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6,

 y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6,

 y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6,

 y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6 };

 return a;

 }

 public static double[] integ(double x, double[] y) {

 //represents ODE fed as f() into RK4

 double F = y[0];

 double dF = y[1];

 double ddF = y[2];

 double dddF = -(((F + 1) * ddF) - (dF * (dF - 1))) / x;

 double dM = y[4];

 double ddM = (-F * dM) / x;

 return new double[] { dF, ddF, dddF, dM, ddM };

 }

 public static void genShoot() {

 //uses various shooting methods to find correct initial values to

store in shoot array

 //uses bisect algorithm

 double o = bisect(0.8,0.9);

 double o1 = o * (o - 1);

 double o2 = bisect1(0.1, 0.13, o, o1);

 double yinit[] = { 0, o, o1, 0, o2 };

 shoot = yinit;

 System.out.println("Shooter: " + o + " " + o1 + " " + o2);

 }

 public static double bisect(double minVal, double maxVal) {

 //bisection algorithm specially configured to approximate F value

 double x = minVal;

 double fmin = F(minVal);

 double tol = 0.003;

 int maxiter = 100;

 int k = 0;

 while (k <= maxiter) {

 x = (minVal + maxVal) / 2.0;

 double fx = F(x);

 k += 1;

 if ((Math.abs(maxVal - minVal) / 2.0) < tol)

 break;

 if (sign(fmin) == sign(fx)) {

72

 minVal = x;

 fmin = fx;

 } else

 maxVal = x;

 }

 if (k > maxiter)

 System.err.println("Exceeded Maxiter");

 return x;

 }

 public static double bisect1(double minVal, double maxVal, double o1,

 double o2) {

 //bisection algorithm specially configured to approximate m value

 double x = minVal;

 double fmin = M(minVal, o1, o2);

 double tol = 0.003;

 int maxiter = 100;

 int k = 0;

 while (k <= maxiter) {

 x = (minVal + maxVal) / 2.0;

 double fx = M(x, o1, o2);

 k += 1;

 if ((Math.abs(maxVal - minVal) / 2.0) < tol)

 break;

 if (sign(fmin) == sign(fx)) {

 minVal = x;

 fmin = fx;

 } else

 maxVal = x;

 }

 if (k > maxiter)

 System.err.println("Exceeded Maxiter");

 return x;

 }

 public static double F(double e) {

 //returns F as requested by first bisect method

 double f1 = e;

 double f2 = f1 * (f1 - 1);

 double yinit[] = { 0.0, f1, f2, 0.0, 0.12 };

 yinit = calcInteg1(yinit, 200);

 return yinit[1];

 }

 public static double M(double e, double o1, double o2) {

 //returns m as requested by second bisect method

 double m1 = e;

 double yinit[] = { 0.0, o1, o2, 0.0, m1 };

 yinit = calcInteg1(yinit, 200);

 return yinit[4];

 }

 public static double[] calcInteg1(double y[], double X) {

 //modified method of previous calcODE method specifically made to

work with bisect methods

 double x = 0.01;

 double dx = 0.01;

73

 while (x < X) {

 x += dx;

 y = rk4(x, dx, y);

 }

 return y;

 }

 public static int sign(double x) {

 //returns int depending on sign of x value

 if (x < 0)

 return -1;

 else if (x > 0)

 return 1;

 else

 return 0;

 }

}

WoodWhite.java

import java.io.FileWriter;

import java.io.IOException;

import javax.swing.JFileChooser;

//java implementation of Wood-White Algebraic Powerlaw Function

public class WoodWhite {

 //k l n used to approximate powerlaw function

 private static float k = (float) 0.93;

 private static float l = (float) 0.96;

 private static float n = (float) 1.6;

 //eddy viscity

 private static float eV=5;

 //z at which the function will be evaluated at

 private static float z=20;

 //arrays containing inversed values of powerlaw

 private static float[] O;

 private static float[] E;

 private static float[] V1;

 private static JFileChooser chooser = new JFileChooser();

 private static float[] W1;

 //radius value at which the maximum velocity occured

 private static float Rmax = (float) 119.4774;

 //step r(radius) will iterate at

 private static float dR = (float) 0.001;

 //to be used for index correction

 private static int ic = (int) (1 / dR);

 public static void main(String[] args) {

 //initializes arrays

 E = new float[(int) (Rmax / dR)];

 V1 = new float[(int) (Rmax / dR)];

 O = new float[(int) (Rmax / dR)];

 W1 = new float[(int) (Rmax / dR)];

74

 //iterates through r values getting and storing value of powerlaw

function at each

 for (float R = 0; R < Rmax; R += dR) {

 int i = (int) (ic * R);

 O[i] = calcO(R);

 E[i]=calcE(R);

 V1[i]=calcV1(R);

 W1[i]=calcW1(R);

 }

 try{

 //exports in .csv

 exportData();

 }

 catch(Exception e){

 }

 System.out.println("Done");

 }

 public static void exportData() throws IOException{

 //exports data into .csv file

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 chooser.showSaveDialog(null);

 String filename = chooser.getSelectedFile().getPath();

 FileWriter writer = new FileWriter(filename + "\\WWData.csv");

 writer.append("R");

 writer.append(",");

 writer.append("v");

 writer.append(",");

 writer.append("u");

 writer.append(",");

 writer.append("w");

 writer.append("\n");

 for (int i = 0; i < O.length; i++) {

 float R=i*dR;

 writer.append(""+R);

 writer.append(",");

 //O value is v value

 writer.append(""+O[i]);

 writer.append(",");

 //u value is eddy viscosity * dE

 float U=eV*V1[i];

 writer.append(""+U);

 writer.append(",");

 //w value is eddy viscosity dW*z, should change with z but in

order to save computing time

 //was only calculated at one z

 float W=z*W1[i];

 writer.append(""+W);

 writer.append("\n");

 writer.flush();

 }

 writer.close();

 }

 public static float calcO(float R){

 //uses powerlaw function to approximate x value

75

 return (float) (Math.pow(R, k) / Math.pow(

 1 + (k / n) * (Math.pow(R, n / l) - 1), l));

 }

 public static float calcE(float R){

 //uses newton's finite differntiation to get dO

 float d=0;

 if(R==0)

 d=(calcO(R+dR)-calcO(R))/dR;

 else if(R==Rmax)

 d=(calcO(R)-calcO(R-dR))/dR;

 else

 d=(calcO(R+dR)-calcO(R-dR)/(dR*2));

 if(R==0)

 return (float) (d+(calcO(R)/0.01));

 return d+(calcO(R)/R);

 }

public static float calcV1(float R){

 //uses newtons finite differntiation to get dE

 float d=0;

 if(R==0)

 d=(calcE(R+dR)-calcE(R))/dR;

 else if(R==Rmax)

 d=(calcE(R)-calcE(R-dR))/dR;

 else

 d=(calcE(R+dR)-calcE(R-dR)/(dR*2));

 return d/calcE(R);

}

public static float calcW1(float R){

 //uses newtons finite differentiation to get dW

 float d=0;

 if(R==0)

 d=(calcV1(R+dR)-calcV1(R))/dR;

 else if(R==Rmax)

 d=(calcV1(R)-calcV1(R-dR))/dR;

 else

 d=(calcV1(R+dR)-calcV1(R-dR)/(dR*2));

 if(R==0)

 return -(d+(calcV1(R)/dR));

 return -(d+(calcV1(R)/R));

}

}

Database Export Method
public static void recordTest() {

 try {

 // System.out.println(

Class.forName("org.hsqldb.jdbcDriver"));

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 conn = DriverManager.getConnection(dburl, user,

password);

 // System.out.println("Database connection

established");

 } catch (Exception ex) {

 ex.printStackTrace();

 JOptionPane

 .showMessageDialog(

 null,

76

 "Did you forget to start

the database?. The program will stop and you can restart.",

 "Database Error",

JOptionPane.ERROR_MESSAGE);

 System.exit(99);

 }

 Statement st;

 ResultSet rs = null;

 float v, u, w, angle, pr;

 // store start step in the database

 // store the timestamp and get the runID from the database

 long timeMillis = System.currentTimeMillis();

 Timestamp startTime = new Timestamp(timeMillis);

 UUID uuid = UUID.randomUUID();

 long timeNano = System.nanoTime();

 uuid.toString();

 System.out.println("Program took "

 + (System.nanoTime() - timeNano)

 + " to do the tostringing");

 String stringUUID = uuid.toString();

 try {

 st = conn.createStatement();

 st.execute("CREATE TABLE IF NOT EXISTS

`Vortexes`.`RUN"

 + stringUUID

 + "` (`XCOR` FLOAT NULL , `YCOR` FLOAT

NULL ,"

 + "`ZCOR` FLOAT NULL ,`R` FLOAT NULL

,`VX` FLOAT NULL ,`VY` FLOAT NULL ,`VZ` FLOAT NULL ,"

 + "`V` FLOAT NULL ,`U` FLOAT NULL ,`W`

FLOAT NULL ,`PRESSURE` FLOAT NULL)");

 for (int zCor = 0; zCor < Zmax; zCor++) {

 for (int yCor = 0; yCor < (2 * Ymax); yCor++) {

 timeNano = System.nanoTime();

 for (int xCor = 0; xCor < (2 * Xmax);

xCor++) {

 v = V[xCor][yCor][zCor];

 w = W[xCor][yCor][zCor];

 u = U[xCor][yCor][zCor];

 pr = P[xCor][yCor][zCor];

 if ((xCor + Xmin) * deltaR == 0

 && (yCor + Ymin)

* deltaR == 0)

 angle = 0;

 else {

 angle = (float)

Math.atan2((yCor + Ymin) * deltaR,

 (xCor +

Xmin) * deltaR);

 if (angle < 0)

 angle = (float)

((2 * Math.PI) + angle);

 }

 float x = (xCor + Xmin) *

deltaR;

77

 float y = (yCor + Ymin) *

deltaR;

 Float r = (float) Math.sqrt(x *

x + y * y);

 Float vX = (float) ((u *

Math.cos(angle)) - (v * Math

 .sin(angle)));

 if (vX.equals(Float.NaN))

 System.out.println(u + "

" + v + " " + xCor + " "

 + yCor +

" " + H[0][0]);

 Float vY = (float) ((u *

Math.sin(angle)) + (v * Math

 .cos(angle)));

 if (vY.equals(Float.NaN))

 System.out.println(u + "

" + v + " " + xCor + " "

 + yCor +

" " + H[0][0]);

 String sql = "insert into

`Vortexes`.`run"

 + stringUUID

 + "`

(XCOR,YCOR,ZCOR,R,VX,VY,VZ,V,U,W,PRESSURE) values ("

 + x + "," + y +

"," + zCor * deltaR + "," + r

 + "," + vX + ","

+ vY + "," + w + "," + v + ","

 + u + "," + w +

"," + pr + ");";

 System.out.println(sql);

 st.execute(sql);

 }

 /*System.out.println("Program took "

 + (System.nanoTime() -

timeNano)

 + " to do the single

loop");*/

 }

 }

 System.out.println("Program took "

 + (System.currentTimeMillis() -

timeMillis)

 + " to do the sqling");

 //System.out.println(wholeStatement.toString());

 System.out.println("Program took "

 + (System.currentTimeMillis() -

timeMillis)

 + " to do the exporting");

 // st.executeQuery("CHECKPOINT");

78

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

Python

kuoTest.py

import numpy

import matplotlib.pyplot as plt

#graphs values of U,V,W, F, F', and M versus R using matplotlib

#served as testbed for java application

#implements Kuo's equations

lu=[]

lv=[]

lw=[]

lx=[]

lf=[]

lf1=[]

lm=[]

lp=[]

lt=[]

b=0.01

R=7500

eV=5

r=0.1

dR=4

X=0

t=0.01

dt=b/eV

aP=100000

p=1

global o

global o1

def integ(x, state):

 F,dF,ddF,M,dM = state

 dddF=-(((F+1)*ddF)-(dF*(dF-1)))/x

 ddM = (-F * dM) / x

 return numpy.array([dF,ddF,dddF,dM,ddM])

def rk4(x, h, y, f):

 k1 = h * f(x, y)

 k2 = h * f(x + 0.5*h, y + 0.5*k1)

 k3 = h * f(x + 0.5*h, y + 0.5*k2)

 k4 = h * f(x + h, y + k3)

 return x + h, y + (k1 + 2*(k2 + k3) + k4)/6.0

def calcX(r):

 return b*r*r/(4*eV)

def calcU(r,f):

 return (-2*eV/r)*f

def calcV(r,m):

 return (R/r)*m

def calcW(z,dF):

79

 return b*z*dF

def calcInteg(X):

 t=0.01

 dt=b/eV

 y= numpy.array([0, -0.85, 1.5725, 0, 0.12])

 while t<X:

 t,y= rk4(t,dt,y,integ)

 return y

def calcPres(X, m,res):

 total=0

 deltaR=X/res

 for x in range (2,res+1):

 r=x*deltaR

 rn=(x-1)*deltaR

 integ=0.5*((m*m/(r*r))+(m*m/(rn*rn)))*deltaR

 total+=integ

 print total

 return total,aP+((b*p*R*R)/(8*eV))*total

def calcInteg1(y,X):

 t=0.01

 dt=0.01

 while t<X:

 t,y= rk4(t,dt,y,integ)

 return y

def F(e):

 f1=e

 f2=f1*(f1-1.)

 yinit=numpy.array([0.,f1,f2,0.0,0.12])

 yinit=calcInteg1(yinit,200)

 #print yinit[0]," ",yinit[1]," ",yinit[2]," ",yinit[3]," ",yinit[4]

 return yinit[1]

def M(e):

 m1=e

 yinit=numpy.array([0.,o,o1,0.,m1])

 yinit=calcInteg1(yinit,200)

 #print yinit[0]," ",yinit[1]," ",yinit[2]," ",yinit[3]," ",yinit[4]

 return yinit[4]

def sign(x):

 if x < 0:

 return -1

 elif x > 0:

 return 1

 else:

 return 0

def bisect(f, minVal, maxVal):

 x = minVal

 fmin = f(minVal)

 tol=0.003

 maxiter=100

 k = 0

 while k <= maxiter:

 x = (minVal + maxVal) / 2.0

 fx = f(x)

 k +=1

 if (abs(maxVal - minVal) / 2.0) < tol:

 break

80

 if sign(fmin) == sign(fx):

 minVal, fmin = (x, fx)

 else:

 maxVal = x

 if k > maxiter:

 print "Error: exceeded %d iterations" % maxiter

 else:

 return x

o=bisect(F,-0.9,-0.8)

o1=o*(o-1.)

o2=bisect(M,0.1,0.13)

print "F' %10f F'' %10f M' %10f"%(o,o1,o2)

g= numpy.array([0, o, o1, 0, o2])

print g

while r<500:

 X=calcX(r)

 while t<X:

 t,g= rk4(t,dt,g,integ)

 lx.append(r)

 u=calcU(r,g[0])

 w=calcW(1000,g[1])

 v=calcV(r,g[3])

 total,pS=calcPres(X,g[3],200)

 lf.append(g[0])

 lf1.append(g[1])

 lm.append(g[3])

 lu.append(u)

 lw.append(w)

 lv.append(v)

 lp.append(pS)

 lt.append(total)

 print("%10f %10f %10f %10f %10f %10f" %(r,u,v,w,pS,g[0]))

 r+=dR

plt.figure(1)

plt.plot(lx,lf,color="g",label="F vs r")

plt.plot(lx,lf1,color="r",label="F' vs r")

plt.plot(lx,lm,color="b",label="M vs r")

plt.legend()

plt.figure(2)

plt.plot(lx,lu,color="g",label="U vs r")

plt.plot(lx,lv,color="r",label="V vs r")

plt.plot(lx,lw,color="b",label="W vs r")

plt.legend()

plt.figure(3)

plt.plot(lx,lp,color="y",label="P vs r")

plt.legend()

plt.show()

wwTest2.py

import numpy

import matplotlib.pyplot as plt

#graphs values of U,V,W, and powerlaw values versus R using matplotlib

81

#served as testbed for java application

#implements Wood-White equations

n=1.6

k=0.93

l=0.96

ic=1/0.01

Rmax=2

dR=0.001

cor=1./dR

R=numpy.arange(0,Rmax,dR)

O=numpy.arange(0,Rmax,dR)

E=numpy.arange(0,Rmax,dR)

V=numpy.arange(0,Rmax,dR)

W=numpy.arange(0,Rmax,dR)

def calcO(r):

 return numpy.power(r,k)/numpy.power(1+(k/n)*(numpy.power(r,n/l)-1),l)

def calcE(O):

 E=numpy.arange(0,Rmax,dR)

 a=len(O)

 for x in range(0,a):

 if(x==0):

 d=(O[x+1]-O[x])/dR

 E[x]=d+(O[x]/cor)

 elif(x==a-1):

 #print x

 d=(O[x]-O[x-1])/dR

 c=float(x)/cor

 E[x]=d+(O[x]/c)

 else:

 d=(O[x+1]-O[x-1])/(dR*2)

 c=float(x)/cor

 E[x]=d+(O[x]/c)

 return E

def calcV(E):

 V=numpy.arange(0,Rmax,dR)

 dE=numpy.arange(0,Rmax,dR)

 a=len(E)

 for x in range(0,a):

 if(x==0):

 d=(E[x+1]-E[x])/dR

 V[x]=d/E[x]

 dE[x]=d

 elif(x==a-1):

 #print x

 d=(E[x]-E[x-1])/dR

 V[x]=d/E[x]

 dE[x]=d

 else:

 d=(E[x+1]-E[x-1])/(dR*2)

 V[x]=d/E[x]

 dE[x]=d

 return dE,V

def calcW(V):

 W=numpy.arange(0,Rmax,dR)

 dde=numpy.arange(0,Rmax,dR)

 a=len(V)

82

 for x in range(0,a):

 if(x==0):

 d=(V[x+1]-V[x])/dR

 W[x]=-(d+(V[x]/dR))

 dde[x]=d

 elif(x==a-1):

 #print x

 d=(V[x]-V[x-1])/dR

 c=float(x)/cor

 W[x]=-(d+(V[x]/c))

 dde[x]=d

 else:

 d=(V[x+1]-V[x-1])/(dR*2)

 c=float(x)/cor

 W[x]=-(d+(V[x]/c))

 dde[x]=d

 return dde,W

O=calcO(R)

E=calcE(O)

dE,V=calcV(E)

ddE,W=calcW(V)

plt.figure(1)

plt.plot(R,O,color="r",label="O vs r")

plt.legend()

plt.figure(2)

plt.plot(R,E,color="r",label="E vs r")

plt.legend()

plt.figure(3)

plt.plot(R,10*V,color="r",label="V vs r")

plt.legend()

plt.figure(4)

plt.plot(R,V*E,color="r",label="W vs r")

plt.legend()

plt.figure(5)

plt.plot(R,dE,color="r",label="dE vs r")

plt.legend()

plt.figure(6)

plt.plot(R,ddE,color="r",label="ddE vs r")

plt.legend()

plt.show()

Cuda
For those unfamiliar with CUDA, __device__ methods can only be called by the GPU, and __global__

methods can be called by both and are often the kernel. The kernel is called by a

<<<blocksize,threadsize>>>kernalName() statement.

tests_cuda3.cu (Euler Integration)

//uses GPU to solve Sullivan's integrals

#include <stdio.h>

//RES is resolution*2

#define RES 100

#define E 2.71828182846

__device__ float FunctionT(float t, int resolution){

83

 //integrates Sullivan H function at each t value split accros

resolution

 float total = 0;

 float dR = t / resolution;

 int n=0;

 for (n = 2; n <= resolution; n++) {

 float r = (n) * dR;

 float rn = ((n - 1)) * dR;

 float e=E;

 float integ = (float) (0.5 * (((1 - pow(e, -r)) / r) + ((1 -

pow(e, -rn)) / rn)) * dR);

 total += 3. * integ;

 }

 total = total - t;

 return total;

}

__global__ void calcInteg(float *h,int resolution,int secRes){

 //grid split accross gpu x= blockId y = threadID for each

process

 //calculates the value of Sullivans integral using Euler

integration at each gridpoint

 float x=blockIdx.x;

 float y=threadIdx.x;

 int i=(RES*y)+x;

 float x1 = (x -RES) * 9;

 float y1 = (y -RES) * 9;

 float r1 = (float) sqrt((x1 * x1) + (y1 * y1));

 float X=(float) (0.04 * r1 * r1) / (2 * 50);

 float total = 0;

 float dR1 = X / resolution;

 int n;

 for (n = 2; n <= resolution; n++) {

 float r = (n) * dR1;

 float rn = ((n - 1)) * dR1;

 float e=E;

 float integ = (float) (0.5 * (pow(e,FunctionT(r,

secRes)) + pow(e,FunctionT(rn, secRes))) * dR1);

 total += integ;

 }

 h[i]=total;

}

int main(){

 //initializes cudaEvents for timing

 cudaEvent_t start,stop;

 float elapsedTime;

 //array to contain all H values

 float h[RES][RES];

 //pointer for h for GPU use

 float *ph;

 //creates Events

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaEventRecord(start,0);

 //allocates necessary space on GPU

 cudaMalloc((void**) &ph, RES*RES*sizeof(float));

84

 //calls the Kernel with RES blocks and RES threads to split grid over

processes

 calcInteg<<<RES,RES>>>(ph,200,200);

 //copies values of now filled array on GPU to CPU counterparts

 cudaMemcpy(h,ph,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 //stop time recorded

 cudaEventRecord(stop);

 cudaEventSynchronize(stop);

 //elapsed time recorded and printed

 cudaEventElapsedTime(&elapsedTime,start,stop);

 printf("That took %f ms\n",elapsedTime);

 //sampling of results printed into console

 int x, y;

 for(x=0;x<RES;++x){

 for(y=0;y<RES;++y){

 if(x==y)

 printf("H at x=%d y=%d is %f\n",x,y,h[x][y]);

 }

 }

 }

KuoCuda3.cu

#include <stdio.h>

#include <math.h>

//amount of loops RK4 will traverse

#define N 5

//this variable is the equivalent of resolution *2

#define RES 100

//maximum radius problem will be evaluated to

#define Rmax 1000

//divides Rmax by Res/2 to get distance between each gridpoint

#define deltaR 1000/(RES/2)

//suction strength of vortex

#define B 0.01

//density of air

#define p 1

//ambient pressure of air

#define aP 10000

//eddy viscosity of vortex

#define eV 5

//circulation strength of vortex

#define R 7500

#define PI 3.14159265359

//sets up arrays containing F, F', m values of ODE and U,V,W and Pressure

values at

//each gridpoint

static float f[RES][RES];

static float dF[RES][RES];

static float M[RES][RES];

static float U[RES*RES*RES/2];

static float V[RES*RES*RES/2];

static float W[RES*RES*RES/2];

static float P[RES*RES*RES/2];

85

__device__ float integ(float x, float y[], int i) {

 //represents Kuo's ODEs to be solved with RK4

 //returns either F, F', F'', m, or m' depending on what was requested

by RK4 loop

 float ans;

 if (i == 0)

 ans = y[1]; /* derivative of first equation */

 if (i == 1)

 ans = y[2]; /* derivative of second equation */

 if(i==2)

 ans=-(((y[0] + 1) * y[2]) - (y[1] * (y[1] - 1))) / x;

 if(i==3)

 ans=y[4];

 if(i==4)

 ans=(-y[0]*y[4])/x;

 return ans;

}

__device__ void RK4(float x, float y[], float h) {

 //solves ODE used in Kuo's equation through RK4 methodology

 float t1[N], t2[N], t3[N], /* temporary storage arrays */

 k1[N], k2[N], k3[N], k4[N]; /* for Runge-Kutta */

 int i;

 for (i = 0; i < N; i++) {

 double m=k1[i] = h * integ(x, y, i);

 t1[i] = y[i] + 0.5 *m;

 }

 for (i = 0; i < N; i++) {

 double m=k2[i] = h * integ(x + 0.5*h, t1, i);

 t2[i] = y[i] + 0.5 * m;

 }

 for (i = 0; i < N; i++) {

 double m=k3[i] = h * integ(x + 0.5*h, t2, i);

 t3[i] = y[i] + m;

 }

 for (i = 0; i < N; i++) {

 k4[i] = h * integ(x + h, t3, i);

 }

 for (i = 0; i < N; i++) {

 y[i] += (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6.0;

 }

}

__device__ float calcX(float r){

 //returns X value for each r

 return (B * r * r) / (4 * eV);

}

__device__ void calcODE(float a[], float X){

 //calculates ODE values for each grid, stores newest values into array

a

 float x=0.01, dx=B/eV;

 while(x<X){

 x+=dx;

86

 RK4(x,a,dx);

 }

}

__device__ float calcU(float r1,float f){

 //returns U value at each gridpoint

 float r=r1;

 if (r == 0)

 r += 0.01;

 return (-10 * eV / r) * f;

}

__device__ float calcV(float r1,float m){

 //returns V value at each gridpoint

 float r=r1;

 if (r == 0)

 r += 0.01;

 return (R / r) * m;

}

__device__ float calcW(float z,float dF){

 //returns W value at each gridopint

 return B * z * dF;

}

__device__ float calcP(float X,float m, int res) {

 //uses Euler integration to find pressure at each gridpoint

 float total = 0;

 float dR = X / res;

 int x2=0;

 for (x2 = 2; x2 < res + 1; ++x2) {

 float b = x2 * dR;

 float bn = (x2 - 1) * dR;

 float integ = (float) (0.5 * ((m * m / (b * b)) + (m *

m / (bn * bn))) * dR);

 total += integ;

 }

 return aP + ((B * p * R * R) / (8 * eV)) * total;

 }

__global__ void calcRK4(float *f, float *dF, float *M,float *u,float *v,

float *w, float *pres){

 //initiates calculations for each gridpoint

 //grid split accross gpu x= blockId y = threadID for each

process

 //uses axisymettry to cut down calculations through use of

reflections

 float x=blockIdx.x;

 float y=threadIdx.x;

 int i=(RES*y)+x;

 int z;

 float x1 = (x -(RES/2)) *deltaR;

 float y1 = (y -(RES/2)) * deltaR;

 float r1 = (float) sqrt((x1 * x1) + (y1 * y1));

 float a[5];

 //initial values copied from Java implemented shooting code

 a[0]=0;

 a[1]=-0.857;

 a[2]=1.593;

 a[3]=0;

 a[4]=0.128;

 calcODE(a,calcX(r1));

87

 float f1=a[0];

 float df=a[1];

 float m=a[3];

 float U=calcU(r1,f1);

 float V=calcV(r1,m);

 float P=calcP(calcX(r1),m,500);

 f[i]=f1;

 dF[i]=df;

 M[i]=m;

 for(z=0;z<=(RES/2);++z){

 int i2=x + y * RES + z * RES * RES;

 u[i2]=U;

 v[i2]=V;

 w[i2]=calcW(z*deltaR,df);

 pres[i2]=P;

 }

 float x2=x;

 float y2=RES-y;

 i=(RES*y2)+x2;

 f[i]=f1;

 dF[i]=df;

 M[i]=m;

 for(z=0;z<(RES/2);++z){

 int i2=x2 + y2 * RES + z * RES * RES;

 u[i2]=U;

 v[i2]=V;

 w[i2]=calcW(z*deltaR,df);

 pres[i2]=P;

 }

 x2=RES-x;

 y2=y;

 i=(RES*y2)+x2;

 f[i]=f1;

 dF[i]=df;

 M[i]=m;

 for(z=0;z<(RES/2);++z){

 int i2=x2 + y2 * RES + z * RES * RES;

 u[i2]=U;

 v[i2]=V;

 w[i2]=calcW(z*deltaR,df);

 pres[i2]=P;

 }

 x2=RES-x;

 y2=RES-y;

 i=(RES*y2)+x2;

 f[i]=f1;

 dF[i]=df;

 M[i]=m;

 for(z=0;z<(RES/2);++z){

 int i2=x2 + y2 * RES + z * RES * RES;

 u[i2]=U;

 v[i2]=V;

 w[i2]=calcW(z*deltaR,df);

 pres[i2]=P;

 }

}

88

int main(){

 //initializes variables, cudaEvents store time each was recorded at

 cudaEvent_t start,stop;

 //elapsedTime in ms will be calced and stored in here

 float elapsedTime;

 //creates the Cuda events

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 //pointers for use in mem operations

 float *pf,*pdF,*pm,*u,*v,*w,*pres;

 //start event recorded

 cudaEventRecord(start,0);

 //allocates sufficient memory for arrays in GPU ram

 cudaMalloc((void**) &pf, RES*RES*sizeof(float));

 cudaMalloc((void**) &pdF, RES*RES*sizeof(float));

 cudaMalloc((void**) &pm, RES*RES*sizeof(float));

 cudaMalloc((void**) &u, RES*RES*(RES/2)*sizeof(float));

 cudaMalloc((void**) &v, RES*RES*(RES/2)*sizeof(float));

 cudaMalloc((void**) &w, RES*RES*(RES/2)*sizeof(float));

 cudaMalloc((void**) &pres, RES*RES*(RES/2)*sizeof(float));

 //calls the Kernel with Res/2+1 blocks and Res/2+1 threads

 //this allows the calculations to be properly split accross the GPU

 calcRK4<<<(RES/2)+1,(RES/2)+1>>>(pf,pdF,pm,u,v,w,pres);

 //checks for errors in execution

 cudaError_t error = cudaGetLastError();

 printf("%s\n",cudaGetErrorString(error));

 //copies now filled arrays on GPU into CPU counterparts

 cudaMemcpy(f,pf,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(dF,pdF,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(M,pm,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(U,u,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(V,v,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(W,w,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(P,pres,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost

);

 //end event recorded

 cudaEventRecord(stop);

 cudaEventSynchronize(stop);

 //ellapsed time recorded and printed

 cudaEventElapsedTime(&elapsedTime,start,stop);

 printf("That took %f ms\n",elapsedTime);

 //results randomly sampled and printed to console

 int o=0;

 for(o=0;o<RES/2;++o){

 int i=o + o * RES + o * RES * RES;

 printf("%f %f %f\n",V[i],W[i],U[i]);

}

 //results exported to .csv file

 int x, y,z;

 printf("Beggining Data Export\n");

 FILE *f= fopen("VectDataCuda.csv","w");

 if(f==NULL){

 printf("Error opening file\n");

 exit(1);

 }

89

 fprintf(f,"XCor");

 fprintf(f,",");

 fprintf(f,"YCor");

 fprintf(f,",");

 fprintf(f,"ZCor");

 fprintf(f,",");

 fprintf(f,"r");

 fprintf(f,",");

 fprintf(f,"Vx");

 fprintf(f,",");

 fprintf(f,"Vy");

 fprintf(f,",");

 fprintf(f,"Vz");

 fprintf(f,",");

 fprintf(f,"v");

 fprintf(f,",");

 fprintf(f,"u");

 fprintf(f,",");

 fprintf(f,"w");

 fprintf(f,",");

 fprintf(f,"Pressure");

 fprintf(f,"\n");

 for (z = 0; z < RES/2; ++z) {

 for (y = 0; y < RES; ++y) {

 for (x = 0; x < RES; ++x) {

 int i=x + y * RES + z * RES * RES;

 float v = V[i];

 float w = W[i];

 float u = U[i];

 float p1=P[i];

 float xCor=(x -(RES/2)) * deltaR;

 float yCor=(y -(RES/2)) * deltaR;

 float zCor=z * deltaR;

 float r=sqrt((xCor*xCor)+(yCor*yCor));

 float angle;

 if (xCor == 0 && yCor == 0)

 angle = 0;

 else {

 angle = (float)

atan2(yCor,xCor);

 if (angle < 0)

 angle = (float) ((2 *

PI) + angle);

 }

 float Vx = (float) ((u * cos(angle)) -

(v * sin(angle)));

 float Vy= (float) ((u * sin(angle)) +

(v *cos(angle)));

 fprintf(f,

"%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n", xCor,yCor,zCor,r,Vx,Vy,w,v,u,w,p1);

 }

 }

 }

 fclose(f);

}

90

RK4cuda.cu

#include <stdio.h>

#define N 5

//RES is resolution *2

#define RES 200

//finds space between gridopoints with Rmax of 1000

#define deltaR 1000/(RES/2)

//defines suction strength of vortex

#define B 0.01

//denisty of air

#define p 1

//ambient pressure of air

#define aP 10000

//eddy viscosity of vortex

#define eV 5

//circulation strenght of vortex

#define R 7500

#define PI 3.14159265359

__device__ float integ(float x, float y[], int i) {

 //gets appropriated calculated ODE value based on query from RK4 loop

 float ans;

 if (i == 0)

 ans = y[1]; /* derivative of first equation */

 if (i == 1)

 ans = y[2]; /* derivative of second equation */

 if(i==2)

 ans=-(((y[0] + 1) * y[2]) - (y[1] * (y[1] - 1))) / x;

 if(i==3)

 ans=y[4];

 if(i==4)

 ans=(-y[0]*y[4])/x;

 return ans;

}

__device__ void RK4(float x, float y[], float h) {

 //uses RK4 methodology to solve ODE

 float t1[N], t2[N], t3[N], /* temporary storage arrays */

 k1[N], k2[N], k3[N], k4[N]; /* for Runge-Kutta */

 int i;

 for (i = 0; i < N; i++) {

 double m=k1[i] = h * integ(x, y, i);

 t1[i] = y[i] + 0.5 *m;

 }

 for (i = 0; i < N; i++) {

 double m=k2[i] = h * integ(x + 0.5*h, t1, i);

 t2[i] = y[i] + 0.5 * m;

 }

 for (i = 0; i < N; i++) {

 double m=k3[i] = h * integ(x + 0.5*h, t2, i);

 t3[i] = y[i] + m;

 }

 for (i = 0; i < N; i++) {

91

 k4[i] = h * integ(x + h, t3, i);

 }

 for (i = 0; i < N; i++) {

 y[i] += (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6.0;

 }

}

__device__ float calcX(float r){

 //returns X value for each r

 return (B * r * r) / (4 * eV);

}

__device__ void calcODE(float a[], float X){

 //runs the loop for RK4 solving of ODE

 float x=0.01, dx=B/eV;

 while(x<X){

 x+=dx;

 RK4(x,a,dx);

 }

}

__global__ void calcRK4(float *f, float *dF, float *M){

 //grid split accross gpu x= blockId y = threadID for each

process

 float x=blockIdx.x;

 float y=threadIdx.x;

 //array index calculated

 int i=(RES*y)+x;

 //real x values calculated

 float x1 = (x -(RES/2)) *deltaR;

 float y1 = (y -(RES/2)) * deltaR;

 float r1 = (float) sqrt((x1 * x1) + (y1 * y1));

 float a[5];

 //initial values copied from Java implemented shooting code

 a[0]=0;

 a[1]=-0.857;

 a[2]=1.593;

 a[3]=0;

 a[4]=0.128;

 //calculated ODE values for each gridpoint

 calcODE(a,calcX(r1));

 //stores into arrays and takes advantage of axi-symmetry to

shorten calcuations

 f[i]=a[0];

 dF[i]=a[1];

 M[i]=a[3];

 float x2=x;

 float y2=RES-y;

 i=(RES*y2)+x2;

 f[i]=a[0];

 dF[i]=a[1];

 M[i]=a[3];

 x2=RES-x;

 y2=y;

 i=(RES*y2)+x2;

 f[i]=a[0];

 dF[i]=a[1];

 M[i]=a[3];

 x2=RES-x;

92

 y2=RES-y;

 i=(RES*y2)+x2;

 f[i]=a[0];

 dF[i]=a[1];

 M[i]=a[3];

}

int main(){

 //initializes variables to measure time in ms

 cudaEvent_t start,stop;

 float elapsedTime;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 //creates arrays contained ODE values at each point

 float f[RES][RES],dF[RES][RES],M[RES][RES];

 //pointers for use in GPU

 float *pf,*pdF,*pm;

 //records start event

 cudaEventRecord(start,0);

 //allocates space in GPU

 cudaMalloc((void**) &pf, RES*RES*sizeof(float));

 cudaMalloc((void**) &pdF, RES*RES*sizeof(float));

 cudaMalloc((void**) &pm, RES*RES*sizeof(float));

 //runs kernel with RES/2+1 blocks and RES/2+1 threads to calculate

 //ODE values at each gridpoint in parallel

 calcRK4<<<RES/2+1,RES/2+1>>>(pf,pdF,pm);

 //copies filled arrays in GPU to CPU counterparts

 cudaMemcpy(f,pf,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(dF,pdF,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 cudaMemcpy(M,pm,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);

 //records stop event and calculates and prints elapsed time

 cudaEventRecord(stop);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&elapsedTime,start,stop);

 printf("That took %f\n",elapsedTime);

 //prints random sampling of resuls to console

 int x, y;

 for(x=0;x<RES;++x){

 for(y=0;y<RES;++y){

 if(x==y)

 printf("R at x=%d y=%d F is:

%f\n",x,y,f[x][y]);

 }

 }

}

