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Executive Summary 
 Tornadoes such as Joplin, Mo (2011), Spencer, SD (1998), and Dallas, Texas (1957) 

induce extremely high wind velocities that devastate structures and lift off large objects in their 

path. Typically, a tornado takes up to an hour to materialize in the form of a narrow 

axisymmetric vortex and sustains that structure for 10-20 minutes after which the tornado dies 

down. Near real time simulation of tornado core flow could significantly improve accuracy of 

Dopplar on Wheels (DOW) radar measurements which in turn would enable more effective 

warning and evacuation strategies. Presently very simplified vortex models, such as the algebraic 

Wood-White model and the modified Rankine model, are being used to simulate radar signatures 

necessary to reconstruct real world tornadoes with limited success. Other alternatives, such as 

commercial CFD tools, may provide more accurate results but take long periods of time to 

compute. We believe that mathematical frameworks developed by Drs. Sullivan and Kuo provide 

an optimum approach to bridge this gap because they are based on fluid-mechanically and 

thermodynamically self-consistent physics to model atmospheric vortices with sufficient 

accuracy. Implementation of their models required the solving of multiple and coupled non-

linear boundary value fourth order ordinary differential equations (ODEs) using a fourth-order 

iterative Runge-Kutta method (RK4). Because certain sub-models consisted of differential-

integrals, we had to effectively implement Euler integration and Newton’s finite differentiation 

algorithms, as well as create a coordinate transformation system to easily move data from polar 

coordinates used for tornado computations and the Cartesian system for all other operations. 

Combining all these methods and building on the works of scientists such as Kuo and Sullivan 

we created a series of programs that accurately simulated vortex flow, examined dynamics of 

particles with pre-defined mass and drag coefficients when subjected to said vortex, and exported 

the data for use in visualization with Paraview, a multi-platform scientific visualization software 

being developed by Sandia and Los Alamos National Labs. Furthermore, we validated the 

models by comparing their predictions for wind velocities with measurements reported in the 

literature for the 1998-Spencer and 1957-Dallas tornadoes. A surprisingly good comparison was 

observed: which established validity of our implementation of Kuo’s models. Once these 

computer models were built, it was quickly realized that they can be very time consuming by 

modern standards and at the same time had tremendous potential for successful optimization 

work. As such, we conducted a series of optimization tasks designed to speed up the execution of 

our code including: (a) utilized the graphics processing unit (GPU) to accelerate the RK4 and 

Euler integration computations, and finally the entire Kuo model, (b) used CPU multi-threading 

feature to accelerate the particle tracing algorithm; and (c) implemented a new data format 

system to reduce the size of the exported file and decrease write times. The optimization tasks 

proved to be extraordinarily effective, as the GPU optimization dropped computing time by over 

2000 percent, CPU multithreading proved to shave significant amounts of time from the particle 
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computing, and the data formats allowed the writing of large volumes of data while taking 

smaller amounts of disk space as well as write time.  
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Introduction 

Phenomenological description of an atmospheric vortex 
There exists much complex physics behind the behavior and physical characteristics that 

make up atmospheric vortices, such as hurricanes, tornadoes and dust devils. At a basic level, 

such vortices form when heavier colder Arctic air finds itself atop of lighter warm air from the 

Gulf of Mexico, and as a result is forced to sink toward the ground, while the warm air is forced 

to rise, thus causing instability. This situation is akin to a bath tub filled to the brim with water 

with a stopper preventing the water from draining into the pipes. When the stopper is pulled the 

water begins to drain, but since the water is attempting to enter the drain from multiple different 

angles a circular motion, or vortex, is observed, as it represents the simplest way for all the water 

in the tub to exit. In an atmospheric vortex the colder air at a higher altitude begins to fall rapidly 

while the warm air rises, and for the same reason the water in the bathtub began to spin, the 

column of air begins to spin as the warmer air makes its ascent. As described by Neuenshwander, 

tornadoes form when an exceptionally powerful thunderstorm collects enough heat and moisture 

to form a supercell, which tips over to a horizontal orientation when it hits sufficient horizontal 

drafts, thus forming a mesocyclone. The mesocyclone then tumbles through a series of not fully 

understood transformations and at the other end emerges a tornado
 [1]

.  This transformation, aka 

tornado-genesis, might take several hours, but the tornado-vortex itself only lasts tens of minutes 

during which time it causes immense destruction.  It is this intense phase of tornado that we 

intend to simulate. 

Once a tornado is formed other factors affect it as well, such as pressure differences 

throughout the vortex which in turn are a reflection of the buoyancy forces induced by 

temperature differences. Generally, a more powerful tornado will have a larger difference 

between temperature of the cold air up top and the warm air closer toward the bottom. This heat 

gradient, referred to as the suction strength or buoyancy loading, generally describes how 

powerful the forces driving the tornado will be and the greater the gradient the more powerful the 

tornado. Other forces that determine the intensity of the tornado include the amount of energy a 

block of air would have when it’s raised skyward, or its convective available potential energy 

(CAPE) which is also related to the circulation intensity, and finally the eddy viscosity which is 

an artificial construct to simulate the ‘solid-like’ core region of a tornado. Despite these complex 

phenomena measured wind velocities exhibit a rather simple structure. Many twisters tend to be 

axisymmetric even when extraordinarily high intensity tangential winds are involved. Further 

velocities in the core region tend to increase steadily as the radius from the center of the tornado 

increases until a maximum point is reached, after which the velocities decrease steadily until 

they return to a baseline. Often meteorologists such as storm chasers collect important data about 

the tornado such as; the CAPE, suction strength, and wind speeds. Such measurements are 
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crucial, not just to for assessing the power of tornadoes, but for the purpose of understanding the 

advanced mechanics present in a tornado through media such as a computer model.  

 

 Tornado Morphology: One Cell vs. Two Cell Tornadoes 
 The tornadoes we analyzed vary between two basic forms: one cell and two cell 

tornadoes. A one-cell tornado has a single column of upward flowing air in which the most 

powerful winds occur, and is surrounded by an area of downward flowing air with slower wind 

speeds. In a two cell tornado, there is a core of downward flowing cold air surrounded by a ring 

of upward flowing air. Thus there is a center in which the velocities in the z direction are 

negative (that is flowing downwards), and a ring outside the center in which the z velocities are 

positive (that is, flowing upwards). Just like in the one-cell tornado, the velocities in two-cell 

tornado also die down the further away you go from the core of the twister 
[2]

. Figure below 

illustrates these phenomena.  Note that foci of our simulations are the three drawings on the left 

side of the figure. 

 
Figure 1: Diagram of one cell tornado on far left, and multiple cell tornadoes in middle. Far right 

describes multiple tornadoes in a single super cell – like those occurred in Texas in 1957. Diagram 

is from Church et al 
[2] 

 Mathematical Models 
 Although theoretical models of tornadoes have existed since the 1950s they were not 

accurate enough to yield any useful results when parsed into a computer model. Experimental 

work conducted by Ward 
[3]

 provided fundamental understanding into the underlying physics 

behind a tornado and helped pave the way for new and improved theoretical work and models. 

Improved measurements coupled with modeling resulted in a definitive and scientific work by 

Davies-Jones 
[4]

.  We rely on this and similar publications by scientist such as Drs. Kuo and 

Sullivan to develop our computer model.  

 For the most part, modern computer modeling and simulation of tornadoes has taken two 

parallel paths. The first technique relies on the computational fluid dynamics (CFD) codes to 

simulate 3-D aspects of a developing tornado which was first demonstrated by Harlow and Stein 

from Los Alamos National Laboratory
 [13]

.  Recently Sarkar et al 
[5]

 utilized commercially 

available CFD code Fluent 6.0 to create a model twister and then they compared their predictions 

to data from the 1998-Spencer tornado. Their approach, while accurate, was incredibly time 
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consuming taking in excess of a day to run on a powerful workstation. It was also extremely 

sensitive to the boundary conditions and did not capture the storm thermodynamics accurately.  

As described by Thakar et al,
 [6]

 another alternative is to take advantage of the 

axisymmetric nature of a vortex flow which allows one to reduce the governing Navier-Stokes 

equations into a set of non-linear coupled ODEs. This is the approach followed by Sullivan and 

Kuo who generated models upon which our own computer simulations are based around. Yet 

another approach that has been gaining ground recently due to its flexibility is that developed by 

Wood and White 
[10]

. This particular approach is referred to as a parametric rational function and 

is developed for the sole purpose of real-

time simulation of radar signatures 

generated by a tornado and to reconstruct 

tornado structure from the radar 

measurements.  But what it gains in 

flexibility it loses in accuracy, for 

example predicted velocities tend towards 

infinity within the core of the tornado. It 

is notable that Kuo’s, Sullivan’s, and 

Wood-White’s models take advantage of 

the axisymmetry and are written using a 

polar coordinate scheme shown to the left 

in figure 2. The boundary conditions of 

the models are also shown as well. 

Kuo’s Model 
 In 1966, Dr. Kuo proposed a tornado model that is directly solved from the Navier Stokes 

equations. As described by Kuo his model is based on “a system of simplified yet sufficiently 

accurate equations adequate by expanding flow variables”. These variables come in the form of 

“two atmospheric parameters that are related to driving energies that are caused by the unstable 

stratification and the vorticity that determines tornado radius”. Unlike his contemporary 

scientists, Dr. Kuo 
[8]

 modeled not only the fluid mechanics of the tornado but their overall 

thermodynamics through the use of an energy conservation equation. It is notable to mention that 

the Kuo’s model transitions from the two-cell vortex to a single-cell vortex by simply changing 

the boundary condition. The underlying ODEs are as follows: 

 

 

Figure 2-  Polar unit vectors 

Figure 2: Displays diagram of polar coordinates and boundary cond. 
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Where, x, F, σ, and m are non-dimensional parameters that are related to the physical parameters 

as follows:  

Radius, r, is related to x as  

Tangential Velocity (v) =  

Radial Velocity (u) =  

Axial Velocity (w) =  

Where, 

  is eddy viscosity (m
2
/s)  

  is buoyancy related suction strength (#/s) 

 Pressure =  

  is the density of the air (kg/m
3
)  

 a is the ambient pressure (Pa) 

  is the circulation strength (m
2
/s) 

Suction strength,   and circulation intensity,   are related to temperature ( ) and ceiling height 

(h) as follows 

  and   

Weather stations across the mid-western states monitor conditions in the super cell, especially 

Pa, ρ,  and  regularly.  Below in figure 3 is an 

example of a sounding graph used by 

meteorologists during 1998-Spencer tornado. 

Recorded readings illustrate the instability as shown 

by the slop of the red line, which is negative 

initially up to a pressure of 157 milli-bar (also 

10061 ft).  Negative pressure indicates that density 

is increasing with elevation which is inherently 

unstable.  The stable layer exists above 10,0061 

feet. For this storm the estimated β values ranged 

between 0.01 and 0.02 and   values ranged between 
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7500 and 9000 m
2
/s. Those values were used for validating flow velocity predictions by our 

model.  

Figure 3. Omaha, Nb, sounding graph 

on 31/May/98 Spencer Tornado 

 

After proposing his ODEs, Kuo found an approximate closed form solution to the equations 

above to facilitate easier computation of velocities. His analytical solutions are as follows. 

; ;  and  

It is easy to see that these equations can give rise to non-physical predictions as x0 u, v∞.  

While less accurate than the ODEs, closed form solutions offer an easier way to craft a similar 

prediction using less computing time and allowing for a simpler code. 

  Sullivan’s model 
 R.D. Sullivan, a contemporary of Kuo, followed a similar procedure to simplify the 

Navier-Stokes equations into a set of coupled ODEs, and then derived a set of analytical 

expressions. Sullivan ODEs were the subject of a 2009 Master’s Thesis by Mr. Baker 
[7]

, who 

concluded that Sullivan’s equations can be extremely unstable, stiff, and cannot be generalized 

easily at low eddy viscosities
 [7]

. We independently concluded that Sullivan ODE equations 

become unstable during the shooting method implementation of RK4.  So we chose to use his 

closed form solution instead, which offers near similar results but is less accurate than the ODEs. 

These equations also give rise to non-physical predictions as x0 u, v∞.Following, are the 

closed form solutions 
[9]

. 

; ; and  

 

 

Wood-White Model 
 The Wood-White model, written in 2010, is a parametric model that can be fit to the 

actual measured tangential velocities and then inversed to estimate other parameters of interest 

including u, w, pressure, circulation strength, and buoyancy related to suction strength. 
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; ;  ;  and  

Where the parameter  represents the eddy viscosity of the vortex at hand, and n,  ,   are parameters 

changed by the user to fit the v vs r graph the model generates to one observed in real life. The u, and w 

are then solvable once the v value is derived 
[10]

. 
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Figure 4. Problem statement at- a-glance. 

 

Problem Statement 
Multiple fundamental problems still exist with the modeling of atmospheric vortices, 

such as tornadoes and dust devils, that this projects attempts to address. Several modeling 

options exist for simulating tornados, as shown in Figure 4. The primary models in use currently 

for the modeling of such phenomenon are the Rankine models originally developed in 1800’s. 

This simplified model does not account for two-cell vortices and was eliminated from further 

consideration in our study.  On the other hand, commercial CFD codes could be used to obtain 

accurate predictions, but they take long periods of computational time, on the scale of hours or 

even days. Further, utilizing CFD codes would not give this team the opportunity to explore the 

physics behind a tornado or engage in optimization tasks to the extent with which we desire.  

The dynamics of a fully developed tornado – as confirmed by most recent Doppler on Wheels 

radar imaging – to a first-order approximation are very similar to steady axisymmetric vortices. 

Under such an assumption the governing Navier Stokes equations have been reduced into a set of 

coupled non-linear 

ordinary differential 

equations by Drs. Kuo 

and Sullivan. We have 

chosen mathematical 

framework of these 

two researchers in our 

study.  Though they 

were originally 

postulated in 1960s, as 

demonstrated by Baker 

in 2010 
[7] 

solutions to 

these ODEs are not 

straight forward, and are complicated by the fact that the boundary conditions are ill defined, the 

ODEs are stiff, and the geometry is extremely large. Our objective is to employ modern 

computation algorithms to solve ODEs that include Eulerian fluid mechanics equation, as well as 

Lagragian particle transport equations, which come out to around 20 equations altogether. These 

equations formed the basis for our computer model that can: (a) in near real time simulate an 

atmospheric vortex with sufficient accuracy, (b) utilize its predictions to predict how debris or 

other objects would move through said vortex, and (c) then export the data for visualization in 

the state-of-the-art scientific visualization software Paraview. Upon verifying code predictions 

by comparing with the approximate solutions presented above, we extended the code to simulate 

the 1998-Spencer tornado and 1957-Dalls tornado.  These simulation results were compared with 



13 
 

the actual measurements as a step towards validating the code.  Then we optimized the created 

computer code through the use of the GPU, CPU multithreading, and data format optimization.  
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Problem Solution 

Overview of Methodology 
 As shown in Figure 4, the tasks necessary to create a model that would fulfill our 

expectations were broken into four main categories: the RK4 loop that would be used to solve 

ODEs that describe the fluid flow in an Eulerian frame, Euler’s method for integration especially 

to compute pressure once velocities are known, Newton’s method for differentiation used to 

compute axial and radial velocities using the Wood-White model, and of course a coordinate 

transformation system that switches between polar and Cartesian coordinates, and a Lagrangian 

particle tracer program. We employed most if not all of these steps in the writing of separate 

programs, each built to utilize either Kuo’s, Sullivan’s, or Wood-White’s methodology. We 

utilized a combination of Python and Java for most of the implementation of the solution. C was 

utilized mainly during the optimization phase of our program, which will be elaborated on in the 

optimization section of the report.  

 Fourth Order Runge-Kutta Loop and Shooting method 
 The fourth order Runge-Kutta method (RK4), also known as the classic Runge-Kutta 

method, is used extensively throughout our various programs, be it solving the ODEs behind 

Kuo’s equations or handling the calculations necessary for the Lagrangian particle trace system. 

Assuming yn is a scalar or vector value, t is a scalar to correspond to a time or x value with which 

we are approximating, and h is the step with which we are sampling, then given a function f 

which represents an ODE, we can utilize the RK4 methodology to solve for yn+h and tn+h. using 

the following equations. 

 

 

 

 

 

 
  

We adopted this method on multiple occasions into Java, Python, and C most notably for 

solving the ODEs behind Kuo’s equation. First, in order to solve Kuo’s model the ODEs 

described in the introduction under Kuo’s model were re-written as follows. 
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The variables F, , and m were solved after being subjected to the following boundary 

conditions. 

 

 
 

Because the RK4 loop is not capable of solving such a boundary value problem, we 

utilized a shooting method that iterates over various guesses for F’(0) and m’(0) until the 

boundary conditions are satisfied. We used a self implemented bisect root finding algorithm to 

find the appropriate initial values, that were then stored into an array of type double and size 

five, and filled in the order of [F,F’,F’’,m,m’]. At each gridpoint, the first step is to compute 

dimensionless distance x as given by  where, r is distance the gridpoint is from the center (that 

is, ). Then the vector [F, F’, F’’, σ, σ’’, m, m’] is computed at x using the RK4 loop. The F, 

F’, and m elements of the data set are then used to calculate the u, v, w, and pressure values for the grid 

point at hand; σ is used to compute logarithmic temperature (which is not used much in our analyses, 

hence not shown in our code). Since, as one may imagine, the RK4 loop is at times quite computationally 

intensive we took advantage of the axisymmetric nature of the problem yet again.  Instead of calculating 

the vector at each gridpoint, we split the physical grid into four quadrants and only calculated the points at 

quadrant one, before any other values were calculated. As the F, F’, and m values are the only ones used 

later in calculations only they were stored into their own two dimensional arrays (i.e. all F values were 

stored in an array named F) and then were reflected across the axis. After all the RK4 calculations were 

finished we continued to calculated the u, v, w, and pressure values at each gridpoint, and the program 

accessed the needed F, F’, and m through the array they were contained in. The actual code that 

compromised the RK4 loop and shooting method can be found in Appendix A, under the Java section. 

Either KuoTest.java or KuoTestMP.java will contain it. 

 Lagrangian Particle Tracing Method 
   The particle tracer method is designed to determine how a vortex as modeled by our 

simulator would affect its surroundings, such as debris or other objects in its path. This feature is 

important because Doppler on Wheels radars often rely on reflections from the debris to resolve 

flow fields within the core region. Essentially, the method sets up a particle with a certain mass, 
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area, and drag coefficients, and starting (x,y,z) coordinate as well as a starting <Vx,Vy,Vz> 

velocity vector. The path the particle would follow when subjected to a flow field is described by 

Newton’s equations of motion, namely F=ma. Mathematically then, force is expressed in vector 

notation as: 

 

Force is caused by the drag and further expressed as: 

 

Resulting in over all force balanced equations of: 

 

 

 
Where: 

  

 

 

 

 

  

The following three equations are 

used with the previous three in the 

RK4 loop to trace the path of the 

particle; the situation is visualized 

below in figure 5: 

 

 

Figure 5: Describes the various forces 

that affect movement of a particle in a 

flow field 
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The initial conditions employed by the methods are the initial (x,y,z) coordinates of the particle 

and its initial <Vx,Vy,Vz> velocity values. Then an initial time value of 0 is set and the 

maximum time value of (in this case) 250 seconds is initialized. Then the RK4 method moves 

from the initial time value to the maximum at an interval of 0.01 seconds, while employing the 

previous six equations to determine the particles (x,y,z) and <Vx,Vy,Vz> values at each 

timestep. The values are then stored into their own array so that the [x, y, z, Vx, Vy, Vz] values 

for the particle at each timestep can then be exported into a .csv file and visualized in Paraview. 

This particular method was only written in Java and a full listing of the code utilized in the 

particle trace can be found in Appendix A, under the Java section. Sullivan.java, KuoTest.java, 

or KuoTestMP.java will contain the method but only KouTestMP.java will contain a 

multithreaded variant.The area of the particle was subsumed into the drag coefficient in our code. 

 Euler and Newton’s Finite Differentiation 
 Throughout all three models; Kuo, Sullivan, and Wood-White, we were often forced to 

integrate functions. In Kuo’s and Sullivan’s models the Euler integration method was used to 

solve the function necessary to find the pressure in each grid cell. Furthermore, the H function 

that is used throughout Sullivan’s model depends on Euler integration in order to find a valid 

solution. The Wood-White model depends on Newton’s finite differentiation methods heavily in 

order to invert the algebraic approximation and yield results other than the v unit vector value. 

 Coordinate Mapping and Matrix Transformations 
 In order to yield results that could be successfully used for 3d visualization in a program 

such as Paraview, we had to first create a grid system that would serve as a framework for 

literally everything that followed. The most logical choice was to utilize a set of three 

dimensional arrays of type float to store the data for each gridpoint. However, since we aspired 

to simulate an entire vortex, not just the core or outskirts, we would have to set up a rectangular 

grid space around the size of 2 km by 2km by 1 km, in our program, with the center of the 

tornado being positioned in the middle of the grid at z=0. As one might imagine such a large 

array (2000x2000x1000 elements) would be prohibitively expensive, are far as computing time 

is concerned, so we came up with a compromise that would allow us to maintain a large world 

area while still keeping a manageable array size. We created an Rmax variable, a resolution 

variable, and a deltaR variable, the first of which dictates the maximum distance away from the 

center of the tornado our gridworld world will evaluate to in real world units, the second dictates 

how many gridspaces that our program will have from the center of the tornado to the Rmax, and 

the third is represented by Rmax/resolution. For example, say that you want to evaluate the 

vortex to 1000 meters away from you origin (i.e. Rmax=1000) in the x direction, 1000 in the y, 

and 1000 in the z, at a resolution of 50. The program would create an array of 100x100x50 

elements and divide the Rmax by the resolution to obtain a deltaR of 20. Each element of the 

array symbolizes a 3d grid space in the simulated world. However, if the coordinates of the 

gridspace say (1,1,1) must be multiplied by the deltaR value to translate them into real life values 

that can then be inputted into the various models. 
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 Yet another hurdle that must be overcome before our array system can actually symbolize 

a real three dimensional grid is the fact that the coordinates (0,0,0) are not the same as the array 

element [0][0][0]. Since array elements can never go negative, assuming the resolution is 50, the 

element [0][0][0], is actually symbolized by the coordinates (-50,-50,0). In order to get around 

this you must subtract the resolution from the elements x,y,z values in the array, and then 

multiply by deltaR to get its x,y,z values that would correspond to real life. Thus element 

[0][0][0] would correspond to (-1000,-1000,0) in real life. (-1000,-1000,0)  would then be fed 

into the various subroutines in the program to find the u,v,w and pressure the simulated world 

would experience at that point. It is noteworthy that z never goes below zero in real life, so the z 

coordinate need not go through any correction arithmetic other than being multiplied by deltaR. 

 Finally, the models we depend on utilize a polar coordinate scheme while the Paraview 

visualization software, and really most programs, utilize a Cartesian scheme. Thus the array we 

construct to store our values utilizes a Cartesian scheme, and utilizes polar to Cartesian 

translations to allow the data to yield meaningful results. Equations used for translation are as 

follows:   

Relationship among these variables is shown in Figure 6. 

 

Figure 6: Illustration of coordinate transformation used in our model.  

Once all these elements are put together, the following process is constructed as to how 

the program iterates through points inside its grid. The program starts out at the array element 

[0][0][0] and then iterates to the elements [resolution*2][resolution*2][resolution]. At each array 

element the x,y,z values corresponding the array indices are subtracted by resolution and 

multiplied by deltaR to get their real life values. Then these real life values are used to determine 

the u, v, and w unit vector values at each of the real life gridspaces. The Cartesian to polar 

coordinate transformations are necessary in the above step to translate the x,y,z values r and theta 

values which will then be used by the equations outlined by Kuo and Sullivan, as well as the 



19 
 

transformations back from polar to Cartesian coordinate schemes. Then all the derived data is 

exported out under a Cartesian coordinate scheme for use in visualization programs such as 

Paraview. The polar unit vectors and r values are exported to in case one wishes to compare them 

to other polar data. The array system is seen throughout the code in the Sullivan and Kuo models 

written both in Java and C, listings of the full code can be found in Appendix A under the Java 

nd CUDA sections. 

 Exporting and Visualization 
 We utilized two programs to handle the bulk of our visualization work, Microsoft Excel 

and Paraview. The first of which is a basic spreadsheet application useful for doing basic 

visualization and graphing work, the second is an open-source, multi-platform, interactive 3D 

visualization program developed by Sandia National Laboratories, Los Alamos National 

Laboratory, the US Army Research Lab, and Kitware. Using Excel we created a series of v unit 

vector vs. r graphs to be used for comparing the various models as well as validation with real 

life tornadoes. Paraview was used for the bulk of the visualization including some graphing of 

the pressure, u, v, and w variables vs r, generating streamlines and glyphs to provide a rich and 

graphical way to visualize our results, as well as offering a simple way to show the path our 

particles would have travelled in 3D. 

For a good deal of time, the program exported the data utilizing the comma separated 

value (CSV) format which was slow and took large amounts of disk space. To conserve time we 

switched over to a MySQL database system that both sped up write time, and reduced disk space. 

We will elaborate more in the optimization section.  

 Real World Dust Devil Simulator 
 In order to validate the output of the computer model, small-scale dust devils were 

formed in a vortex generator. The vortex generator is an apparatus designed to mimic the natural 

formation of dust devils in a controlled environment. The updraft within the generator was held 

constant across all trials. The circulation of air within the generator was manipulated to 

determine relationships between vorticity and tangential velocity. 

 

Tangential velocity within the generator was determined with a process known as particle 

image velocimetry. A small Styrofoam ball was dropped into the apparatus and, using a strobe 

light and a long-exposure camera, pictures were taken which showed the ball’s location over a 

regular timestep. These images were analyzed with a basic computer program to determine the 

tangential velocity of the dust devil. We ran out of time before we could utilize this vortex 

generator as further validation of our computer model. We plan to integrate this into the 

presentation we will give at the expo. 
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Optimization 
 We conducted three main optimization tasks with the goal of significantly decreasing the 

execution time, as well as the disk space and general computing footprint our program utilized. 

The tasks include, GPU optimization of the Euler integration loops as well as the RK4 method 

and Kuos model, CPU multithreading of the particle trace system used throughout our program, 

and optimization of the storage format used to store our data, namely through the use of a 

database rather than CSV files. While all the modes of optimization did in fact utilize available 

resources more effectively and resulted in faster run times, and smaller data footprints by far the 

most successful was the GPU experimentation judging by nothing other than the huge amounts 

of times saved, while returning the exact same results. 

 GPU optimization 

 A GPU unlike a CPU has massive opportunities for parallelization that makes porting 

over a program such as our own especially enticing. While it may seem to be a difficult task to 

parallelize our model, it is in fact quite easy due to the lack of interdependencies between the 

points in our model. As far as our program is concerned the gridspace (1,1,1) and the gridspace 

(2,2,2) are completely separate from each other. Taking advantage of this trait we utilized the 

Compute Unified Device Architecture (CUDA) framework developed by the company Nvidia in 

an attempt to speed up our code using GPU (it is noteworthy to mention that CUDA code will 

only work on an Nvidia GPU with CUDA cores). On the most basic level, our program is 

iterating through an array, performing mathematical operations on each element of the array, and 

then storing the results back into the array to be exported. CUDA offers a block and thread 

framework that allows us to take advantage of this trait. Essentially a block is a group of threads 

that run on one multiprocessor on the GPU. Each multiprocessor contains a set of stream 

processors upon which one or more threads run on. Blocks are completely independent from one 

another and threads have limited synchronization abilities which are useful in only certain 

situations. The program to be run on the GPU is referred to as the kernel, which should be 

written in such a way that the task contained in each can be split across multiple blocks and 

threads which are then executed simultaneously thus achieving a major speed up from a CPU 

implementation of the same code. We take advantage of this feature by first initializing a set of 

arrays using the same coordinate mapping system described in the problem solution. Then, a set 

of pointers are created on the CPU and space is allocated on the GPU using the cudaMalloc 

method. The kernel is then called with the pointers as parameters and a block size of 

resolution+1, and thread size of resolution +1. (note that in the GPU version of the code 

RES=2*resolution). On the kernel the x, and y indices that each thread will be tasked with 

handling corresponds to the blockId and threadId the thread is assigned. The z indices are 

accounted for through the use of a for loop that each thread handles. Then the same calculations, 

once conducted on the CPU, are done so on the GPU, and once again taking advantage of the 
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axi-symmetric nature of our problem the final values are translated across the x and y axis. Once 

all the values are computed in parallel by the GPU, the values, now stored inside the pointers on 

the GPU’s memory, are copied into the arrays previously defined through the use of the 

cudaMemcpy method. Then using a similar method as defined on the CPU the values are 

exported to a CSV.  

 The GPU optimization resulted in massive speedups in all scenarios it was tested under. 

Even though the GPU would have been theoretically doing more calculations than the CPU, as 

far as the Euler integration loop was concerned, the GPU did in hundreds of milliseconds what 

took the CPU tens of thousands, resulting in a peak 13156.05 percent speed up. Figure 7 below 

shows the time it took in milliseconds for the CPU to conduct calculations vs. the GPU at 

varying resolutions utilizing a logarithmic scale (lower on y axis is better). GPU optimization of 

the RK4 loop resulted in similarly impressive gains, with the GPU doing the same calculations 

that took the CPU hundreds of thousands of milliseconds in just thousands of milliseconds. At its 

peak the GPU cut down execution time from the CPU by 4591.552 percent. Figure 8 below 

shows the time it took in milliseconds for the CPU to conduct the calculations for the RK4 loop 

vs. the GPU at varying resolutions utilizing a logarithmic scale (lower on y axis is better). 

 

 

  

Following the same trend of the RK4 loop and the Euler integration loop, the GPU 

implementation of Kuo’s model achieved significant performance improvements over its CPU 

counterparts, doing once again in thousands of milliseconds what took the CPU hundreds of 

thousands. At its peak the GPU achieved a percent decrease of 4056.718 percent from the CPU. 

Figure 9 below shows the time it took in milliseconds for the CPU to conduct the calculations for 

Kuo’s model vs. the GPU at varying resolutions utilizing a logarithmic scale (lower on y axis is 

better). 

Figure 7. CPU vs. CUDA 

Figure 8. CPU vs. CUDA for RK4 computations. Figure 7. CPU vs. CUDA Euler’s Integration 
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With such impressive gains it’s 

understandable for one to 

question if the GPU is returning 

the same results as the CPU. 

Below in Figure 10 is a set of 

graphs taken after running 

Kuo’s model both on the GPU 

and on the CPU and comparing 

their results. As you can see the 

v, u, w vs r graphs, and values, 

are the same despite the fact 

that the GPU completed much 

faster than the CPU.  

 

 

Figure 10, to the left is the graph of the CPU’s results, in the middles the GPUS, and to the left the two 
graphs placed over each other. X-axis is radius and y axis is velocity in m/s 

 The CUDA code was all written in C, and a full listing of the code can be found under 

Appendix A in the CUDA section.  

CPU Multithreading 
 Although less optimization tasks were performed with the CPU than with the GPU, we 

still conducted work that decreased the time the particle tracer program took to run. Rather, than 

just tracing one particle at a time by calling the appropriate, waiting for it to finish, then 

repeating the process. We took advantage of Java’s built in multithreading functionality. We 

created a new Thread object for each of the particles we wanted to run, and then ran them 

simultaneously in order to improve efficiency. We found that without employing multithreading 

it took 55 milliseconds for the particle tracer to run one particle, but while running 3 particles 

simultaneously we allowed each one to complete in 35, 40 and 44 ms respectively. Thus we were 

able to reduce the time each particle took to run separately and quite effectively reduced the total 

time running 3 particles would have taken if they were not multithreaded. 

 

Figure 9. CPU vs. CUDA for the entire Kuo’s model 
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Data Output Optimization  

 To store the results of our program, we chose to use a MySQL database. The program 

exports results of every run to a server that stores the results for future use. In the database, runs 

are stored as individual tables that are given a name with a universally unique ID assigned by the 

program that writes them. Currently manual access to the database is possible, while a proof-of-

concept python script exists for loading directly from the database to Paraview (we plan to 

complete this script so it will be fully functional shortly). 

 Exporting program results to a database instead of a text based file has multiple benefits. 

First and most importantly is that results in a database are much easier to track and store over 

longer periods of time. Due to the increased accessibly of the results, they are easier to compare 

and analyze. In addition, MySQL uses relatively little disk space. It uses a more space-efficient 

binary data format, and because of the differences in how a database can be loaded into Paraview 

it should be possible to entirely remove one of the columns that needs to be stored. The reason 

for this is that the velocity on the Z Axis must be stored redundantly in order to load a file 

properly directly into Paraview, but a database would be loaded by a script that could simply 

correct the table as the values are read in. Next, the nature of how queries function in the sequel 

language that MySQL uses means that only portions of the data that need to be used can be read, 

limiting the time that it takes to access specific pieces of information. This increases efficiency 

greatly for many types of data-access because it is often not necessary to acquire all the data that 

is stored. Finally, MySQL is designed so that it can be used on a remote server. Our current 

server is connected to the network, but is only accessible on the local area network. Still, the 

potential exists to find a dedicated server and use it to store our runs, which has the benefit of 

allowing global access to our data and allowing distant computers effectively to run the program 

in parallel. The currently functioning Java code can be found under Appendix A as the last entry 

in the Java section. 
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Results 
 This section provides a summary of important predictions of the model including a 

comparison and validation with wind velocities measured in real world tornadoes, in real time. 

Results presented include velocity, stream tracers, glyphs, and debris transport predictions 

visualized using the Paraview software. 

 Model Validation 
 The 1998-Spencer and 1957-Dallas tornadoes were two Fujita Class 4 tornadoes for 

scientific measurements are widely published (de facto these two tornados are used as yard-

sticks for comparison). We simulated these two tornados, using our models and employed them 

as a form of validation. Table 1 provides important parameters measured during these tornadoes 

that were used in our simulation, and references to the data. Also note that these values closely align 

with the range of values provided by Church et al 
[2]

. Table 1  and  were estimated in previous 

studies using meteorological data
[11, 12] 

comparison of the model results with the measured data 

are presented below in Figures 11 and 12. 

Table 1. Meteorological conditions of the tornados used for validation purpose. 

Tornado   (m
2
/s) β (#/s)   (m

2
/s) References 

Spencer, SD 8750 and 7990 0.01 5 Wurman et al 
[11] 

Cleveland, TX 7500 and 6700 0.01 - 0.02 5 Hoechem et al
[12] 
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Figure 11 (Spencer, SD tornado) : In test case 1 (TC1)    was 8750, in test case 2 (TC2)   was at 7990. 
Also, velocities are 2-m averages.  Depending on the reference peak values of measured values changed 
slightly as ground velocities are subtracted. 

 

Figure 13 (Cleveland TX): In test case 1(TC1)   was 7500 and  was 0.01, in test case 2 (TC2)   was 6700 
and  was 0.0135. 

 Our models provided very good agreement with the real data. It is worth noting that this 

agreement is as good as the comparison presented in Wurman et al
 [11]   

using the Wood-White 
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models, and those presented in Sarkar et al
 [5]

 which utilized a full scale CFD. Finally, agreement 

between Sullivan’s equations and the measurements are not as good as our adaptation of Kuo’s 

model. It should however be noted that there is considerable uncertainty in the measurements, 

especially those for the Cleveland TX tornado. 3D Doppler on wheels technology used in 

measurements of the Spencer tornado have reduced the error considerably, but still uncertainties 

as large as 25 percent are to be expected. 

  Predictions 

 1D Velocity Fields 

 After validation, Kuo’s model was run for three cases as described in Table 2. The first 

case is a one cell tornado, the last two are two cells. 

Table 2. Meteorological conditions of the tornados used for predictions. 

   (m
2
/s) β (#/s)   (m

2
/s) 

Case 1 5000 0.01 5 

Case 2 10000 0.02 5 

Case 3 10000 0.01 5 

 Results are shown in Figures 13-15. No numerical instabilities were observed in our 

simulations. As shown here maximum wind velocities can reach as high as 123 m/s or 275 MPH. 

The radius of such an eye could be as large as 100’s of meters. In addition sustained high winds 

exist at distances reaching a kilometer and beyond. These figures also show complicated flow 

fields that exist in two-cell tornadoes. At the very center of the tornado, cold air is “piped in” 

from above at high velocities. Adjacent to these velocities are fast upward moving velocities that 

carry warm air to high elevations. Radial velocities vary correspondingly outwards in the narrow 

central region and inwards in the outward region. This phenomenon is much less complex than in 

the case of a single cell tornado where it acts like a single pipe only moving air upwards. 
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Figure 13 u, v and w vs r graphs for Case 1 

 

Figure 14: u, v, and w vs r graphs for Case 2 
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Figure 15: u, v and w vs r graphs for Case 3 
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 3D Visualization 

 As previously discussed the Paraview software was used to visualize model predictions. 

Figures 16-19 illustrates these fields. Figure 16 displays vectors glyphs that clearly establish 

inward and radial movement of the flow. The stream tracers illustrate 3D movement of an 

imaginary air packet dragged upwards by the tornado. As expected the stream tracers exhibit axi-

symmetry which was also observed in the Spencer tornado. Note the central core region where 

the flow is downward, in the two cell tornado and how the pressure of the air is consistently 

higher towards the core of the tornado. Also, note that the radial velocities are strongest towards 

the core of the tornado and weaker on the outskirts. 

 
Figure 16.  Glyph map of case 3, colored by u velocities 



30 
 

 

Figure 17 stream tracer of case 1 colored by pressure 

 

Figure 18 stream tracer of case 2 colored by v velocities 
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Figure 19 stream tracer of case 3 colored by pressure 

Debris transport maps 

 As previously discussed, these winds are capable of lifting off and carrying large debris. 

We have used five arbitrarily chosen “particles” to simulate this phenomenon, and modeled the 

path they would follow using our particle tracer program. Table 3 provides drag characteristics, 

as well as mass of the particle. 

 Mass of particle (kg) Drag Area (Cd ∙ Af) 

Particle 1 1.0 0.1 

Particle 2 1.0 0.25 

Particle 3 10 0.5 

Particle 4 10 1 

Particle 5 100 3.2 

 

Figures 20-22 below present visualized model predictions as to the path all five particles will 

follow within each case. Each particle was started off at a high altitude, near the center of the 

tornado. 
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Figure 20 Paths for case 1 overlaid atop a stream tracer colored by w 

 

Figure 21 Paths for case 2 overlaid atop a stream tracer colored by v 
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Figure 22: Paths for case 3 overlaid atop a stream tracer colored by w 



34 
 

 

Conclusions: 
It is our conclusion that the complex dynamics of a tornado can be simulated with 

sufficient accuracy using the mathematical framework developed by Dr. Kuo of University of 

Chicago.  Scientists have known that models such as Kuo’s are superior to simple algebraic 

models that are in use right now but they have settled for real-time computation enabled by 

simple models over accuracy. Other’s have utilized commercial CFD codes which generate 

similar results, but take hours or even days to run. By implementing the ODEs on GPU and 

multi-threading on CPU, we have demonstrated that scientifically superior models can also be 

computed in real time, and that their data can also be visualized in 3-D in real-time. As GPUs 

continue to improve, it is our belief that algorithms such as these could be used by the 

meteorologists to reconstruct radar images in real-time.   

Two areas of further research in this general area should be explored: first extending the 

Kuo’s ODEs to simulate unsteady effects of a tornado and secondly, linking our model to radar 

signature model to simulate Doppler velocity signatures of evolving tornados as described by 

Davies –Jones and Wood
[14]

. 
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Significant Original Accomplishments: 
 Throughout the extensive research we conducted as part of creating a working 

implementation of the various components of this project we found that some goals that we had 

set out to achieve had never been done before. While Kuos’ model was originally developed in 

1960-70, it is our belief that we are the first to have compared data generated by Kuo’s models to 

data collected in the field using most recent Dopplar on Wheels technology; previous 

comparison of Kuo’s models were with legacy data with large uncertainties. Thus, our results 

comparisons between Kuo’s model and Sullivan’s model and measured data are one of a kind. 

Based on this good comparison we believe meteorologists are more likely to use such phys-cs-

based models rather than parametric models of the kind being in use right now. The particle 

tracer system we developed in itself may not be new, but its application to tornado conditions is 

relatively new. We have seen one other instance where particle transport was studied using 

Rankine and modified Rankine methods which are only capable of simulating tangential 

velocities, but not the vertical and axial velocities. Unlike that previous study, our model 

accounts for all three components of velocity and thus provides more accurate (at least 

theoretically) particle dynamics. We did not find a single reported scientific study where multi-

threading of particle computations on the CPU were used to study their dynamics in real time – 

which is an original contribution as well. More importantly this feature could enable storm 

chasers to compute simulated radar tracks and also to invert radar tracks to reconstruct flow 

fields.  Finally, the GPU code optimization we ran utilizing the CUDA framework was the first 

ever such experimentation conducted as far as Kuo’s model is concerned. While we were able to 

find certain implementations of the RK4 loop on a GPU, none of the papers found discussed 

solving non-linear, coupled, ODEs or a boundary value problem. Further, none of the current 

RK4 optimization work done on the GPU has been done in such a way to speed up RK4 

calculations over a coordinate grid (our ODEs had to be solved at each unique r value over the 

entire coordinate grid), instead focusing on creating a method that can solve an ODE one at a 

time. Certainly we do not claim that previous scientists could not solve such a problem, but only 

that none of these previous optimization works had a problem of our type in mind during the 

writing of their papers.  

 While uniqueness of individual accomplishments could be debated, even disagreed, it is a 

fact that computational approaches demonstrated by us – such as, use of physics-based ODEs to 

compute flow and temperature fields and Lagrangian particle transport in near-real time, their 

acceleration using GPU-based computation and CPU-multi-threading – have the potential to 

transform the way computation is used in researching tornados and in developing more accurate 

advanced warning technologies. Its significance is further underlined by the fact that two recent 

Master’s Theses in Mathematics are focused on application of ODE’s to simulate tornadoes.
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Discussion of our Team and Experience: 
 Our team is composed of three sophomore students from Los Alamos High School. All 

the members have extensive experience with the Supercomputing Challenge. This is Colin 

Redman’s 6
th

 year competing, Sudeep Dasari’s 5
th

, and David Murphy’s 3
rd

 year. Prior 

experience was extraordinarily useful in planning and implementing this year’s project. 

Normally, this team has done work utilizing agent based modeling software such as Madkit and 

Greenfoot to optimize the likes of shipping facilities. This is the first time we have ever 

conducted such a physics based project, and we found it to be an extraordinary learning 

experience, and most importantly fun. Throughout the course of the year we learned in depth the 

complex physics that compose a tornado, as well as how they relate to the world around them. 

For the first time we were able to take our understanding of the physics behind a situation and 

translate that into a code that could then be used to provide a realistic model of said situation. 

Such a unique experience proved to be extremely educational and stimulating. Furthermore, we 

were for the first time given a computational task that begged for optimization through use of; 

the GPU, CPU multithreading, and data optimization. This is the first time we were able to 

conduct such experimentation in a Supercomputing project and the opportunity proved to be 

useful. 

 Both Sudeep and Colin have worked together for the past four Supercomputing 

challenges and this is the third year David has been part of the team. Sudeep and Colin both 

contributed their programming talents, and while Sudeep handled most the mathematical and 

GPU optimization work, Colin was more involved in data optimization and writing of the final 

report. David’s physical model, while not implemented in the final report, provided some 

interesting validation options and will be included in our expo presentation. He also used his 

artistic talent to make graphics and did a good job with data analysis.  
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Appendix A 
 The following section contains the final versions of the code developed throughout the 

course of this project. While there was more written, those programs were alpha or beta versions 

of the following program and thus it would serve little purpose to include them. This section has 

been split into three sections, Java, Python, and CUDA. The Java code makes up the backbone of 

our project, and the final programs used for visualization of results in Paraview were written in 

Java. Some Python was used throughout the project as a means to develop alpha versions of all 

models and easily check the validity of generated results through use of matplotlib. The CUDA 

code was written in C, and contains only the code written for optimization with the GPU. 

 Java 

SullivanTest.java  

import java.io.FileWriter; 

import java.io.IOException; 

 

import javax.swing.JFileChooser; 

//java implementation of Sullivan's equations and Lagrangian Particle Tracer 

public class SullivanTest { 

 

    private static final float eV = 5;// eddy viscosity 

    private static JFileChooser chooser = new JFileChooser();; 

    private static final float R = 7500;// circulation strength of vortex 

    private static final float a = (float) 0.01;// strength of suction 

    private static final float aP = 10000;// ambient pressure 

    private static final float p = (float) 1;// density of air 

    // limit of H function 

    private static float limitH = calcXInteg(20, 500, 500); 

    // value of H function as it approaches infinity 

    private static float infiniteH = calcXInteg(calcX(42), 500, 500); 

    // Rmax divided by resolution 

    private static float deltaR; 

    // matrix translation variables 

    private static float Xmin, Xmax, Ymin, Ymax, Zmax; 

    // maximum range function will be evaluated to 

    private static float RMax; 

    // variable dictating how many gridpoints Rmax will be split into 

    private static final int resolution = 50; 

    // 3d array containing v,u,w,pressure,H,Vx,Vy values at each gridpoint 

    private static float[][][] V; 

    private static float[][][] U; 

    private static float[][][] W; 

    private static float[][][] P; 

    private static float[][][] Vx; 

    private static float[][][] Vy; 

    private static float[][] H; 

    // array in which the particle tracer will store particles' X,Y,Z,i,j,k 

    // values at each time step 
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    private static float[] traceVx; 

    private static float[] traceVy; 

    private static float[] traceVz; 

    private static float[] traceX; 

    private static float[] traceY; 

    private static float[] traceZ; 

    // maximum time the particle tracer program will iterate to 

    private static float T = 70; 

    // time step used by the particle tracer program 

    private static float dT = (float) 0.01; 

    // the mass of the particle 

    private static float Mp = 1; 

    // the drag coefficients for the particle in the x,y,z direction 

    // respectively 

    private static float Cdz = 1; 

    private static float Cdx = 1; 

    private static float Cdy = 1; 

 

    public static void main(String[] args) { 

        // calculates the deltaR for program 

        deltaR = (RMax) / resolution; 

        System.out.println(deltaR + " " + RMax); 

        // sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix 

        // calculations 

        Xmin = -resolution; 

        Xmax = resolution; 

        Ymin = -resolution; 

        Ymax = resolution; 

        Zmax = resolution; 

        // initialializes the size for each of the above described arrays 

        // When resolution=50 there will be -50 to 50 grid points in x and y 

        // axis and 0-50 in z 

        // The matrix and set up so that each grid point has a slot in the 

array 

        System.out.println(infiniteH); 

        V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        H = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

        Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

                //evaluates the integ and stores in H arrays 

                genHInteg(); 

                //for loops calculate the V U W unit vector and pressure 

values for each grid point 

                //Since [0][0][0] corresponds to (-resolution,-resolution,0) 

Xmin is added to the X coordinate and 

                //Ymin to the Y coordinate to achieve the neccesary matrix 

corrections 

                for (int zCor = 0; zCor < Zmax; zCor++) { 

                    for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                        for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                            V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor + 

Ymin); 

                            U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor + 

Ymin, zCor); 
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                            W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor + 

Ymin, zCor); 

                            //pressure has an additional resolution variable 

for use in Euler Integration 

                            P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor + 

Ymin, zCor); 

                        } 

                    } 

                } 

                try { 

                    System.out.println("Starting data export"); 

                    //calls function that exports data into .csv format 

                    exportData(); 

                } catch (IOException e) { 

                    e.printStackTrace(); 

                } 

                //initilializes the arrays used in particle tracer 

                traceX = new float[(int) (T / dT)+1]; 

                traceY = new float[(int) (T / dT)+1]; 

                traceZ = new float[(int) (T / dT)+1]; 

                traceVx = new float[(int) (T / dT)+1]; 

                traceVy = new float[(int) (T / dT)+1]; 

                traceVz = new float[(int) (T / dT)+1]; 

                //starts timer for tracer 

                long sT=System.currentTimeMillis(); 

                //begins particle trace using starting position of 

(400,400,1000) and starting velocity of <0,0,0> 

                partTrace(400,400,1000,0,0,0); 

                //calculates and prints how long the "particle trace" method 

took 

                System.out.println("Parts Took: 

"+(System.currentTimeMillis()-sT)); 

                try { 

                    //exports the particle data in .csv format 

                    System.out.println("Starting particle export"); 

                    exportPartData(); 

                } catch (IOException e) { 

                    // TODO Auto-generated catch block 

                    e.printStackTrace(); 

                } 

                System.out.println("Done"); 

    } 

 

    public static void exportPartData() throws IOException { 

        //exports data for particles in .csv 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

        chooser.showSaveDialog(null); 

        String filename = chooser.getSelectedFile().getPath(); 

        FileWriter writer = new FileWriter(filename + "\\PartData.csv"); 

        writer.append("Time"); 

        writer.append(","); 

        writer.append("X0"); 

        writer.append(","); 

        writer.append("Y0"); 

        writer.append(","); 

        writer.append("Z0"); 

        writer.append(","); 
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        writer.append("Vpx"); 

        writer.append(","); 

        writer.append("Vpy"); 

        writer.append(","); 

        writer.append("Vpz"); 

        writer.append(","); 

        writer.append("R"); 

        writer.append("\n"); 

        for (float t = 0; t < (100*T); t++) { 

            Float calc=t/100; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceX[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceY[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceZ[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVx[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVy[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVz[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=(float) Math.sqrt(traceX[(int) 

t]*traceX[(int)t]+traceY[(int) t]*traceY[(int)t]); 

            writer.append(""+calc); 

            writer.append("\n"); 

            writer.flush(); 

        } 

 

        writer.close(); 

    } 

    public static void partTrace(float x, float y, float z, float vx, float 

vy ,float vz) { 

        //sets initial values for the particle 

        float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz; 

        //initiliazes current time value 

        double t = 0; 

        //cT, when multiplied by t, calculates the correct array index for 

the t value 

        int cT=(int) (1/dT); 

        //fills 0 slot in arrays with starting conditions 

        traceX[(int) (t * cT)] = x0; 

        traceY[(int) (t * cT)] = y0; 

        traceZ[(int) (t * cT)] = z0; 

        traceVx[(int) (t * cT)] = Vpx; 

        traceVy[(int) (t * cT)] = Vpy; 

        traceVz[(int) (t * cT)] = Vpz; 

        //fills starting conditions into an array to be used in RK4 

        double stats[]={x0,y0,z0,Vpx,Vpy,Vpz}; 
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        //iterates through T values from 0 to T 

        do { 

            t += dT; 

            //uses an fourth order Runge Kutta method to calculate the 

x,y,z,vx,vy,vz at the next time step 

            stats=rk41(T,dT,stats); 

            //stores new x,y,z,Vx,Vy,Vz values into corresponding arrays at 

correct index at restarts process till t=T 

            traceX[(int) (t * cT)]=(float) stats[0]; 

            traceY[(int) (t * cT)]=(float) stats[1]; 

            traceZ[(int) (t * cT)]=(float) stats[2]; 

            traceVx[(int) (t * cT)]=(float) stats[3]; 

            traceVy[(int) (t * cT)]=(float) stats[4]; 

            traceVz[(int) (t * cT)]=(float) stats[5]; 

        } while (t <= T); 

    } 

 

    public static double[] rk41(double x, double h, double[] y) { 

        //implements Fourth Order Runge Kutta with derivpd as f(),returns 

array with all 

        //timestep values x,y,z,Vx,Vy,Vz moved up a step 

        double[] f = derivpd(x, y); 

        double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1], 

                y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a); 

        double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1], 

                y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a); 

        double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2], 

                y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] }; 

        f = derivpd(x + h, a); 

        double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6, 

                y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6, 

                y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6, 

                y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6, 

                y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6, 

                y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 }; 

        return a; 

    } 

    public static double[] derivpd(double t,double[]y){ 

        //gets the i,j,k unit vector values calculated by Kuos model at the 

particles current postion 

        int ix=(int) ((y[0]/resolution)+Xmax); 

        int iy=(int) ((y[1]/resolution)+Ymax); 

        int iz=(int) ((y[2]/resolution)); 

        float Vfx=0,Vfy=0,Vfz=0; 

        Vfx=Vx[ix][iy][iz]; 
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        Vfy=Vy[ix][iy][iz]; 

        Vfz=W[ix][iy][iz]; 

        //calculates the particles next Vx,Vy,Vz  

        double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp; 

        double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp; 

        double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81; 

        //returns new x,y,z,Vx,Vy,Vz values for next time step 

        double a[]= {y[3],y[4],y[5],Fx,Fy,Fz}; 

        return a; 

    } 

 

    public static void exportData() throws IOException { 

        //exports data in .csv 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

        chooser.showSaveDialog(null); 

        String filename = chooser.getSelectedFile().getPath(); 

        float v, u, w, angle, pr; 

        FileWriter writer = new FileWriter(filename + "\\VectData.csv"); 

        int counter = 0; 

        writer.append("XCor"); 

        writer.append(","); 

        writer.append("YCor"); 

        writer.append(","); 

        writer.append("ZCor"); 

        writer.append(","); 

        writer.append("r"); 

        writer.append(","); 

        writer.append("Vx"); 

        writer.append(","); 

        writer.append("Vy"); 

        writer.append(","); 

        writer.append("Vz"); 

        writer.append(","); 

        writer.append("v"); 

        writer.append(","); 

        writer.append("u"); 

        writer.append(","); 

        writer.append("w"); 

        writer.append(","); 

        writer.append("Pressure"); 

        writer.append("\n"); 

        for (int zCor = 0; zCor < Zmax; zCor++) { 

            for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                    v = V[xCor][yCor][zCor]; 

                    w = W[xCor][yCor][zCor]; 

                    u = U[xCor][yCor][zCor]; 

                    pr = P[xCor][yCor][zCor]; 

                    if ((xCor + Xmin) * deltaR == 0 

                            && (yCor + Ymin) * deltaR == 0) 

                        angle = 0; 

                    else { 

                        angle = (float) Math.atan2((yCor + Ymin) * deltaR, 

                                (xCor + Xmin) * deltaR); 

                        if (angle < 0) 

                            angle = (float) ((2 * Math.PI) + angle); 

                    } 
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                    writer.write("" + ((xCor + Xmin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + ((yCor + Ymin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + (zCor * deltaR)); 

                    writer.write(","); 

                    float x = (xCor + Xmin) * deltaR; 

                    float y = (yCor + Ymin) * deltaR; 

                    Float calc = (float) Math.sqrt(x * x + y * y); 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.cos(angle)) - (v * Math 

                            .sin(angle))); 

                    if (calc.equals(Float.NaN)) 

                        System.out.println(u + " " + v + " " + xCor + " " 

                                + yCor + " " + H[0][0]); 

 

                    Vx[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.sin(angle)) + (v * Math 

                            .cos(angle))); 

                    if (calc.equals(Float.NaN)) 

                        System.out.println(u + " " + v + " " + xCor + " " 

                                + yCor + " " + H[0][0]); 

 

                    Vy[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    writer.write("" + w); 

                    writer.write(","); 

                    writer.write("" + v); 

                    writer.write(","); 

                    writer.write("" + u); 

                    writer.write(","); 

                    writer.write("" + w); 

                    writer.write(","); 

                    writer.write("" + pr); 

                    writer.write("\n"); 

                    counter++; 

                    writer.flush(); 

                } 

            } 

        } 

 

        writer.close(); 

        System.out.println(counter); 

    } 

 

    public static float calcRMax() { 

        //returns RMax value for certain eddy viscosity and suction strength 

        return (float) Math.sqrt((20 * 2 * eV) / a); 

    } 

 

    public static float calcV(float x1, float y1) { 

        //returns V value at gridpoint 

        float x = x1 * deltaR; 
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        float y = y1 * deltaR; 

        float r = (float) Math.sqrt((x * x) + (y * y)); 

        r++; 

        return (float) ((R / (2 * Math.PI * r)) * (getHInteg(x1 + Xmax, y1 

                + Ymax) / infiniteH)); 

    } 

 

    public static float calcU(float x1, float y1, float z) { 

        //returns U value at gridpoint 

        float x = x1 * deltaR; 

        float y = y1 * deltaR; 

        float r = (float) Math.sqrt((x * x) + (y * y)); 

        r++; 

        return (float) ((-a * r) + (((6 * eV) / r) * (1 - Math.pow(Math.E, 

                -calcX(r))))); 

    } 

 

    public static float calcW(float z1, float x1, float y1) { 

        //returns W value at gridpoint 

        float z = z1 * deltaR; 

        float x = x1 * deltaR; 

        float y = y1 * deltaR; 

        float r = (float) Math.sqrt((x * x) + (y * y)); 

        float value = (float) (2 * a * z * (1 - (3 * Math 

                .pow(Math.E, -calcX(r))))); 

        r++; 

        return value; 

    } 

 

    public static float calcP(float x1, float y1, float z) { 

        //returns pressure value at gridpoint 

        float x = x1 * deltaR; 

        float y = y1 * deltaR; 

        float r = (float) Math.sqrt((x * x) + (y * y)); 

        r++; 

        float val1 = (float) (1 - Math.pow(Math.E, -calcX(r))); 

 

        return aP + calcPresInteg(200, 2000) 

                - (((a * a * p) / 2) * ((r * r) + (4 * z * z))) 

                - (((18 * p * eV * eV) / (r * r)) * (val1 * val1)); 

    } 

 

    public static float getHInteg(float xCor, float yCor) { 

        //returns value of H function at specified gridpoint 

        return H[(int) xCor][(int) yCor]; 

    } 

 

    public static void genHInteg() { 

        //calculates the various ODE values at each gridpoint in quadrant 1 

        //takes advantage of axi-symettry to translate to other quandrants 

        //stores into necessary arrays 

        long sT = System.currentTimeMillis(); 

        for (int x = 0; x <= resolution; x++) { 

            for (int y = 0; y <= resolution; y++) { 

                float x1 = (x + Xmin) * deltaR; 

                float y1 = (y + Ymin) * deltaR; 

                float r = (float) Math.sqrt((x1 * x1) + (y1 * y1)); 
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                float X = calcX(r); 

                if (X > 20) { 

                    H[x][y] = limitH; 

                } else { 

                    H[x][y] = calcXInteg(X, 200, 200); 

                } 

            } 

        } 

        for (int x = 0; x < resolution; x++) { 

            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

                H[x][y] = H[x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x >= resolution; x--) { 

            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

 

                H[x][y] = H[(resolution * 2) - x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x > resolution; x--) { 

            for (int y = 0; y < resolution; y++) { 

 

                H[x][y] = H[(resolution * 2) - x][y]; 

            } 

        } 

        System.out.println("H took: " + (System.currentTimeMillis() - sT)); 

    } 

 

    public static float calcXInteg(float x, float resolution, float secRes) { 

        //integrate equation at given x and uses resolution variables to 

determine size of Euler integration blocks 

        if (x == 0) 

            return 0; 

        float total = 0; 

        float dR1 = x / resolution; 

        for (int n = 2; n <= resolution; n++) { 

            float r = (n) * dR1; 

            float rn = ((n - 1)) * dR1; 

            float integ = (float) (0.5 * ((Math.pow(Math.E, 

                    FunctionT(r, secRes))) + (Math.pow(Math.E, 

                    FunctionT(rn, secRes)))) * dR1); 

            total += integ; 

        } 

        return total; 

    } 

 

    private static float FunctionT(float t, float resolution) { 

        //integrate equation at given x and uses resolution variables to 

determine size of Euler integration blocks 

        float total = 0; 

        float dR = t / resolution; 

        for (int n = 2; n <= resolution; n++) { 

            float r = (n) * dR; 

            float rn = ((n - 1)) * dR; 

            float integ = (float) (0.5 * (((1 - Math.pow(Math.E, -r)) / r) + 

((1 - Math 

                    .pow(Math.E, -rn)) / rn)) * dR); 
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            total += (3. * integ); 

        } 

        total = total - t; 

        return total; 

    } 

 

    public static float calcPresInteg(float R, int resolution) { 

        //integrate equation at given R and uses resolution variables to 

determine size of Euler integration blocks 

        //returns integral for use in calculating pressure 

        float total = 0; 

        float DR = R / resolution; 

        for (int n = 2; n < resolution; n++) { 

            float r = n * DR; 

            float rn = (n - 1) * DR; 

            float integ = (float) (0.5 * (((5 * 5) / r) + ((5 * 5) / rn)) * 

DR); 

            total += integ; 

 

        } 

        return (float) (1.5 * total); 

    } 

 

    public static float calcX(float r) { 

        //returns X for given r 

        return (a * r * r) / (2 * eV); 

    } 

 

} 

 

KuoTest.java  

import java.io.FileWriter; 

import java.io.IOException; 

import java.math.*; 

import javax.swing.JFileChooser; 

//java implentation of Kuo's equations and Lagrangian particle tracer 

public class KouTest { 

    // eddy viscosity 

    private static final float eV = 5; 

    private static JFileChooser chooser = new JFileChooser(); 

    // circulation strength of vortex 

    private static final float R = 7500; 

    // suction strength of vortex 

    private static final float b = (float) 0.01; 

    // ambient pressure 

    private static final float aP = 10000; 

    //density 

    private static final float p = (float) 1; 

    //Program will calculate x,y,z values between -RMax to RMax 

    private static final float RMax=1000; 

    //number of grid points between origin and maximum 

    private static final int resolution = 50; 

    //distance between each grid point ie. RMax/resolution 
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    private static float deltaR; 

    //symbolizes -resolution,resolution,-resolution,resolution,resolution 

respectively 

    //acts as syntacticly friendly replacer for resolution during matrix 

corrections 

    private static float Xmin, Xmax, Ymin, Ymax, Zmax; 

    //3d array containing all the V unit vector values at each grid point 

    private static float[][][] V; 

    //3d array containing all the U unit vector values at each grid point 

    private static float[][][] U; 

    //3d array containing all the W unit vector values at each grid point 

    private static float[][][] W; 

    //3d array containing all the i unit vector values at each grid point 

    private static float[][][] Vx; 

    //3d array containing all the j unit vector values at each grid point 

    private static float[][][] Vy; 

    //3d array containing all the pressure values at each grid point 

    private static float[][][] P; 

    //2d arrays containing all values of the F, F', and M ODEs at each grid 

point 

    private static float[][] F, dF, M; 

    //array in which our shooting method will store initial values for RK4 

method 

    private static double[] shoot; 

    //array in which the particle tracer will store particles' X,Y,Z,i,j,k 

values at each time step 

    private static float[] traceX; 

    private static float[] traceY; 

    private static float[] traceZ; 

    private static float[] traceVx; 

    private static float[] traceVy; 

    private static float[] traceVz; 

    //maximum time the particle tracer program will iterate to 

    private static float T = 70; 

    //time step used by the particle tracer program 

    private static float dT = (float) 0.01; 

    //the mass of the particle 

    private static float Mp=1; 

    //the drag coefficients for the particle in the x,y,z direction 

respectively 

    private static float Cdz=1; 

    private static float Cdx=1; 

    private static float Cdy=1; 

    public static void main(String[] args) { 

        //calculates the deltaR for program 

        deltaR = (RMax) / resolution; 

        System.out.println(deltaR + " " + RMax); 

        //sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix 

calculations 

        Xmin = -resolution; 

        Xmax = resolution; 

        Ymin = -resolution; 

        Ymax = resolution; 

        Zmax = resolution; 

        //initialializes the size for each of the above described arrays 

        //When resolution=50 there will be -50 to 50 grid points in x and y 

axis and 0-50 in z 
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        //The matrix and set up so that each grid point has a slot in the 

array 

        V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) Zmax]; 

        F = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

        dF = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

        M = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

        System.out.println("generating velocity ODEs..."); 

        //uses shooting method to initialize initial value which will be 

stored in shoot 

        genShoot(); 

        //evaluates the ODE and stores in F,dF,M arrays 

        calcODE(); 

        //for loops calculate the V U W unit vector and pressure values for 

each grid point 

        //Since [0][0][0] corresponds to (-resolution,-resolution,0) Xmin is 

added to the X coordinate and 

        //Ymin to the Y coordinate to achieve the neccesary matrix 

corrections 

        for (int zCor = 0; zCor < Zmax; zCor++) { 

            for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                    V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor + Ymin, 

zCor); 

                    U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor + Ymin, 

zCor); 

                    W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor + Ymin, 

zCor); 

                    //pressure has an additional resolution variable for use 

in Euler Integration 

                    P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor + Ymin, 

zCor,200); 

                } 

            } 

        } 

        try { 

            System.out.println("Starting data export"); 

            //calls function that exports data into .csv format 

            exportData(); 

        } catch (IOException e) { 

            e.printStackTrace(); 

        } 

        //initilializes the arrays used in particle tracer 

        traceX = new float[(int) (T / dT)+1]; 

        traceY = new float[(int) (T / dT)+1]; 

        traceZ = new float[(int) (T / dT)+1]; 

        traceVx = new float[(int) (T / dT)+1]; 

        traceVy = new float[(int) (T / dT)+1]; 

        traceVz = new float[(int) (T / dT)+1]; 

        //starts timer for tracer 

        long sT=System.currentTimeMillis(); 

        //begins particle trace using starting position of (400,400,1000) and 

starting velocity of <0,0,0> 
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        partTrace(400,400,1000,0,0,0); 

        //calculates and prints how long the "particle trace" method took 

        System.out.println("Parts Took: "+(System.currentTimeMillis()-sT)); 

        try { 

            //exports the particle data in .csv format 

            System.out.println("Starting particle export"); 

            exportPartData(); 

        } catch (IOException e) { 

            // TODO Auto-generated catch block 

            e.printStackTrace(); 

        } 

        System.out.println("Done"); 

    } 

    public static void exportPartData() throws IOException { 

        //exports data for particles in .csv 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

        chooser.showSaveDialog(null); 

        String filename = chooser.getSelectedFile().getPath(); 

        FileWriter writer = new FileWriter(filename + "\\PartData.csv"); 

        writer.append("Time"); 

        writer.append(","); 

        writer.append("X0"); 

        writer.append(","); 

        writer.append("Y0"); 

        writer.append(","); 

        writer.append("Z0"); 

        writer.append(","); 

        writer.append("Vpx"); 

        writer.append(","); 

        writer.append("Vpy"); 

        writer.append(","); 

        writer.append("Vpz"); 

        writer.append(","); 

        writer.append("R"); 

        writer.append("\n"); 

        for (float t = 0; t < (100*T); t++) { 

            Float calc=t/100; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceX[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceY[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceZ[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVx[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVy[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 

            calc=traceVz[(int) t]; 

            writer.append(""+calc); 

            writer.append(","); 



53 
 

            calc=(float) Math.sqrt(traceX[(int) 

t]*traceX[(int)t]+traceY[(int) t]*traceY[(int)t]); 

            writer.append(""+calc); 

            writer.append("\n"); 

            writer.flush(); 

        } 

 

        writer.close(); 

    } 

    public static void partTrace(float x, float y, float z, float vx, float 

vy ,float vz) { 

        //sets initial values for the particle 

        float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz; 

        //initiliazes current time value 

        double t = 0; 

        //cT, when multiplied by t, calculates the correct array index for 

the t value 

        int cT=(int) (1/dT); 

        //fills 0 slot in arrays with starting conditions 

        traceX[(int) (t * cT)] = x0; 

        traceY[(int) (t * cT)] = y0; 

        traceZ[(int) (t * cT)] = z0; 

        traceVx[(int) (t * cT)] = Vpx; 

        traceVy[(int) (t * cT)] = Vpy; 

        traceVz[(int) (t * cT)] = Vpz; 

        //fills starting conditions into an array to be used in RK4 

        double stats[]={x0,y0,z0,Vpx,Vpy,Vpz}; 

        //iterates through T values from 0 to T 

        do { 

            t += dT; 

            //uses an fourth order Runge Kutta method to calculate the 

x,y,z,vx,vy,vz at the next time step 

            stats=rk41(T,dT,stats); 

            //stores new x,y,z,Vx,Vy,Vz values into corresponding arrays at 

correct index at restarts process till t=T 

            traceX[(int) (t * cT)]=(float) stats[0]; 

            traceY[(int) (t * cT)]=(float) stats[1]; 

            traceZ[(int) (t * cT)]=(float) stats[2]; 

            traceVx[(int) (t * cT)]=(float) stats[3]; 

            traceVy[(int) (t * cT)]=(float) stats[4]; 

            traceVz[(int) (t * cT)]=(float) stats[5]; 

        } while (t <= T); 

    } 

 

    public static double[] rk41(double x, double h, double[] y) { 

        //implements Fourth Order Runge Kutta with derivpd as f(),returns 

array with all 

        //timestep values x,y,z,Vx,Vy,Vz moved up a step 

        double[] f = derivpd(x, y); 

        double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1], 

                y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a); 

        double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 
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        a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1], 

                y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a); 

        double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2], 

                y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] }; 

        f = derivpd(x + h, a); 

        double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6, 

                y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6, 

                y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6, 

                y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6, 

                y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6, 

                y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 }; 

        return a; 

    } 

    public static double[] derivpd(double t,double[]y){ 

        //gets the i,j,k unit vector values calculated by Kuos model at the 

particles current postion 

        int ix=(int) ((y[0]/resolution)+Xmax); 

        int iy=(int) ((y[1]/resolution)+Ymax); 

        int iz=(int) ((y[2]/resolution)); 

        float Vfx=0,Vfy=0,Vfz=0; 

        Vfx=Vx[ix][iy][iz]; 

        Vfy=Vy[ix][iy][iz]; 

        Vfz=W[ix][iy][iz]; 

        //calculates the particles next Vx,Vy,Vz  

        double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp; 

        double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp; 

        double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81; 

        //returns new x,y,z,Vx,Vy,Vz values for next time step 

        double a[]= {y[3],y[4],y[5],Fx,Fy,Fz}; 

        return a; 

    } 

    public static void exportData() throws IOException { 

        //exports data using the .csv file format 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

        chooser.showSaveDialog(null); 

        String filename = chooser.getSelectedFile().getPath(); 

        float v, u, w, angle, pr, f, df, m; 

        FileWriter writer = new FileWriter(filename + "\\VectData.csv"); 

        int counter = 0; 

        writer.append("XCor"); 

        writer.append(","); 

        writer.append("YCor"); 

        writer.append(","); 

        writer.append("ZCor"); 

        writer.append(","); 

        writer.append("r"); 

        writer.append(","); 

        writer.append("Vx"); 

        writer.append(","); 

        writer.append("Vy"); 

        writer.append(","); 
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        writer.append("Vz"); 

        writer.append(","); 

        writer.append("v"); 

        writer.append(","); 

        writer.append("u"); 

        writer.append(","); 

        writer.append("w"); 

        writer.append(","); 

        writer.append("f"); 

        writer.append(","); 

        writer.append("df"); 

        writer.append(","); 

        writer.append("m"); 

        writer.append(","); 

        writer.append("Pressure"); 

        writer.append("\n"); 

        for (int zCor = 0; zCor < Zmax; zCor++) { 

            for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                    v = V[xCor][yCor][zCor]; 

                    w = W[xCor][yCor][zCor]; 

                    u = U[xCor][yCor][zCor]; 

                    pr = P[xCor][yCor][zCor]; 

                    f = F[xCor][yCor]; 

                    df = dF[xCor][yCor]; 

                    m = M[xCor][yCor]; 

                    if ((xCor + Xmin) * deltaR == 0 

                            && (yCor + Ymin) * deltaR == 0) 

                        angle = 0; 

                    else { 

                        angle = (float) Math.atan2((yCor + Ymin) * deltaR, 

                                (xCor + Xmin) * deltaR); 

                        if (angle < 0) 

                            angle = (float) ((2 * Math.PI) + angle); 

                    } 

                    writer.write("" + ((xCor + Xmin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + ((yCor + Ymin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + (zCor * deltaR)); 

                    writer.write(","); 

                    float x = (xCor + Xmin) * deltaR; 

                    float y = (yCor + Ymin) * deltaR; 

                    Float calc = (float) Math.sqrt(x * x + y * y); 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.cos(angle)) - (v * Math 

                            .sin(angle))); 

                    Vx[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.sin(angle)) + (v * Math 

                            .cos(angle))); 

                    Vy[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    writer.write("" + w); 
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                    writer.write(","); 

                    writer.write("" + v); 

                    writer.write(","); 

                    writer.write("" + u); 

                    writer.write(","); 

                    writer.write("" + w); 

                    writer.write(","); 

                    writer.append("" + f); 

                    writer.append(","); 

                    writer.append("" + df); 

                    writer.append(","); 

                    writer.append("" + m); 

                    writer.append(","); 

                    writer.write("" + pr); 

                    writer.write("\n"); 

                    counter++; 

                    writer.flush(); 

                } 

            } 

        } 

 

        writer.close(); 

        System.out.println(counter); 

    } 

 

 

    public static float calcP(float x1, float y1, float z1, int res) { 

        //calculates pressure at each x,y,z gridpoint, res dictates 

"resolution" of Euler integration 

        float x = deltaR * x1, y = deltaR * y1, z = deltaR * z1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        if (r == 0) 

            r += 0.1; 

        float X = calcX(r); 

        float total = 0; 

        float dR = X / res; 

        for (int x2 = 2; x2 < res + 1; x2++) { 

            float b = x2 * dR; 

            float bn = (x2 - 1) * dR; 

            float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

            float integ = (float) (0.5 * ((m * m / (b * b)) + (m * m / (bn * 

bn))) * dR); 

            total += integ; 

        } 

        return aP + ((b * p * R * R) / (8 * eV)) * total; 

    } 

 

    public static float calcV(float x1, float y1, float z1) { 

        //returns V value at each gridpoint 

        float x = deltaR * x1, y = deltaR * y1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        if (r == 0) 

            r += 0.1; 

        if (x == 0 && y == -1000 && z1 == 0) 

            System.out.println(m + " " + x1 + " " + y1 + " " + ((R / r) * 

m)); 
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        return (R / r) * m; 

    } 

 

    public static float calcU(float x1, float y1, float z1) { 

        //returns U value at each gridpoint 

        float x = deltaR * x1, y = deltaR * y1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        float f = F[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        if (r == 0) 

            r += 0.1; 

        return (-10 * eV / r) * f; 

    } 

 

    public static float calcW(float x1, float y1, float z1) { 

        //returns W value at each gridpoint 

        float z = deltaR * z1; 

        float df = dF[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        return b * z * df; 

    } 

 

    public static void calcODE() { 

        //calculates the various ODE values at each gridpoint in quadrant 1 

        //takes advantage of axi-symettry to translate to other quandrants 

        //stores into necessary arrays 

        for (int x = 0; x <= resolution; x++) { 

            for (int y = 0; y <= resolution; y++) { 

                float x1 = (x + Xmin) * deltaR; 

                float y1 = (y + Ymin) * deltaR; 

                float r = (float) Math.sqrt((x1 * x1) + (y1 * y1)); 

                float[] a = calcODE(calcX(r)); 

                F[x][y] = a[0]; 

                dF[x][y] = a[1]; 

                M[x][y] = a[3]; 

            } 

        } 

        for (int x = 0; x <= resolution; x++) { 

            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

                F[x][y] = F[x][(resolution * 2) - y]; 

                dF[x][y] = dF[x][(resolution * 2) - y]; 

                M[x][y] = M[x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x >= resolution; x--) { 

            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

 

                F[x][y] = F[(resolution * 2) - x][(resolution * 2) - y]; 

                dF[x][y] = dF[(resolution * 2) - x][(resolution * 2) - y]; 

                M[x][y] = M[(resolution * 2) - x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x >= resolution; x--) { 

            for (int y = 0; y <= resolution; y++) { 

 

                F[x][y] = F[(resolution * 2) - x][y]; 

                dF[x][y] = dF[(resolution * 2) - x][y]; 

                M[x][y] = M[(resolution * 2) - x][y]; 
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            } 

        } 

    } 

 

    public static float calcX(float r) { 

        //returns the x value when given r 

        return b * r * r / (4 * eV); 

    } 

 

    public static float[] calcODE(float X) { 

        //iterates through X and uses RK4 loop to get correct ODE values and 

return array in [F,F',F'',m,m'] format 

        double x, dx; 

        x = 0.01; 

        dx = b / eV; 

        double[] y = shoot; 

 

        while (x < X) { 

            x += dx; 

            y = rk4(x, dx, y); 

 

        } 

        float[] a = new float[y.length]; 

        for (int i = 0; i < y.length; i++) { 

            a[i] = (float) y[i]; 

        } 

        return a; 

    } 

 

    public static double[] rk4(double x, double h, double[] y) { 

        //solves ODE used in Kuo's equation through RK4 methodology 

        double[] f = integ(x, y); 

        double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1], 

                y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] }; 

        f = integ(x + 0.5 * h, a); 

        double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1], 

                y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] }; 

        f = integ(x + 0.5 * h, a); 

        double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2], 

                y[3] + k3[3], y[4] + k3[4] }; 

        f = integ(x + h, a); 

        double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6, 

                y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6, 

                y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6, 

                y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6, 

                y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6 }; 

        return a; 

    } 
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    public static double[] integ(double x, double[] y) { 

        //represents ODE fed as f() into RK4 

        double F = y[0]; 

        double dF = y[1]; 

        double ddF = y[2]; 

        double dddF = -(((F + 1) * ddF) - (dF * (dF - 1))) / x; 

        double dM = y[4]; 

        double ddM = (-F * dM) / x; 

        return new double[] { dF, ddF, dddF, dM, ddM }; 

    } 

 

    public static void genShoot() { 

        //uses various shooting methods to find correct initial values to 

store in shoot array 

        //uses bisect algorithm 

        double o = bisect(-0.9, -0.8); 

        double o1 = o * (o - 1); 

        double o2 = bisect1(0.1, 0.13, o, o1); 

        double yinit[] = { 0, o, o1, 0, o2 }; 

        shoot = yinit; 

        System.out.println("Shooter: " + o + " " + o1 + " " + o2); 

    } 

 

    public static double bisect(double minVal, double maxVal) { 

        //bisection algorithm specially configured to approximate F value 

        double x = minVal; 

        double fmin = F(minVal); 

        double tol = 0.003; 

        int maxiter = 100; 

        int k = 0; 

        while (k <= maxiter) { 

            x = (minVal + maxVal) / 2.0; 

            double fx = F(x); 

            k += 1; 

            if ((Math.abs(maxVal - minVal) / 2.0) < tol) 

                break; 

            if (sign(fmin) == sign(fx)) { 

                minVal = x; 

                fmin = fx; 

            } else 

                maxVal = x; 

        } 

        if (k > maxiter) 

            System.err.println("Exceeded Maxiter"); 

        return x; 

    } 

 

    public static double bisect1(double minVal, double maxVal, double o1, 

            double o2) { 

        //bisection algorithm specially configured to approximate m value 

        double x = minVal; 

        double fmin = M(minVal, o1, o2); 

        double tol = 0.003; 

        int maxiter = 100; 

        int k = 0; 

        while (k <= maxiter) { 

            x = (minVal + maxVal) / 2.0; 
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            double fx = M(x, o1, o2); 

            k += 1; 

            if ((Math.abs(maxVal - minVal) / 2.0) < tol) 

                break; 

            if (sign(fmin) == sign(fx)) { 

                minVal = x; 

                fmin = fx; 

            } else 

                maxVal = x; 

        } 

        if (k > maxiter) 

            System.err.println("Exceeded Maxiter"); 

        return x; 

    } 

 

    public static double F(double e) { 

        //returns F as requested by first bisect method 

        double f1 = e; 

        double f2 = f1 * (f1 - 1); 

        double yinit[] = { 0.0, f1, f2, 0.0, 0.12 }; 

        yinit = calcODE1(yinit, 200); 

        return yinit[1]; 

    } 

 

    public static double M(double e, double o1, double o2) { 

        //returns m as requested by second bisect method 

        double m1 = e; 

        double yinit[] = { 0.0, o1, o2, 0.0, m1 }; 

        yinit = calcODE1(yinit, 200); 

        return yinit[4]; 

    } 

 

    public static double[] calcODE1(double y[], double X) { 

        //modified method of previous calcODE method specifically made to 

work with bisect methods 

        double x = 0.01; 

        double dx = 0.01; 

        while (x < X) { 

            x += dx; 

            y = rk4(x, dx, y); 

 

        } 

        return y; 

    } 

 

    public static int sign(double x) { 

        //returns int depending on sign of x value 

        if (x < 0) 

            return -1; 

        else if (x > 0) 

            return 1; 

        else 

            return 0; 

    } 

} 
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KuoTestMP.java 

import java.io.FileWriter; 

import java.io.IOException; 

import java.math.*; 

import javax.swing.JFileChooser; 

//implementation of Kuo's equations in Java utilizing Multithraeding with 

particles 

public class KuoTestMP { 

 

    // eddy viscosity 

    private static final float eV = 5; 

    private static JFileChooser chooser = new JFileChooser(); 

    // circulation strength of vortex 

    private static final float R = 7500; 

    // suction strength of vortex 

    private static final float b = (float) 0.01; 

    // ambient pressure 

    private static final float aP = 10000; 

    //density 

    private static final float p = (float) 1; 

    //Program will calculate x,y,z values between -RMax to RMax 

    private static final float RMax=1000; 

    //number of grid points between origin and maximum 

    private static final int resolution = 50; 

    //distance between each grid point ie. RMax/resolution 

    private static float deltaR; 

    //symbolizes -resolution,resolution,-resolution,resolution,resolution 

respectively 

    //acts as syntacticly friendly replacer for resolution during matrix 

corrections 

    private static float Xmin, Xmax, Ymin, Ymax, Zmax; 

    //3d array containing all the V unit vector values at each grid point 

    private static float[][][] V; 

    //3d array containing all the U unit vector values at each grid point 

    private static float[][][] U; 

    //3d array containing all the W unit vector values at each grid point 

    private static float[][][] W; 

    //3d array containing all the i unit vector values at each grid point 

    private static float[][][] Vx; 

    //3d array containing all the j unit vector values at each grid point 

    private static float[][][] Vy; 

    //3d array containing all the pressure values at each grid point 

    private static float[][][] P; 

    //2d arrays containing all values of the F, F', and M ODEs at each grid 

point 

    private static float[][] F, dF, M; 

    //array in which our shooting method will store initial values for RK4 

method 

    private static double[] shoot; 

    //maximum time the particle tracer program will iterate to 

    private static float T = 250; 

    //time step used by the particle tracer program 

    private static float dT = (float) 0.01; 

    //filepath name for use in exports 

    private static String file; 
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    public static void main(String[] args) { 

                //calculates the deltaR for program 

                deltaR = (RMax) / resolution; 

                System.out.println(deltaR + " " + RMax); 

                //sets up the Xmin,Xmax,Ymin,Ymax,Zmax variables for matrix 

calculations 

                Xmin = -resolution; 

                Xmax = resolution; 

                Ymin = -resolution; 

                Ymax = resolution; 

                Zmax = resolution; 

                //initialializes the size for each of the above described 

arrays 

                //When resolution=50 there will be -50 to 50 grid points in x 

and y axis and 0-50 in z 

                //The matrix and set up so that each grid point has a slot in 

the array 

                V = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                U = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                W = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                Vx = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                Vy = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                P = new float[(int) (Xmax * 2)][(int) (Ymax * 2)][(int) 

Zmax]; 

                F = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

                dF = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

                M = new float[(int) (Xmax * 2)][(int) (Ymax * 2)]; 

                System.out.println("generating velocity integrals..."); 

                //uses shooting method to initialize initial value which will 

be stored in shoot 

                genShoot(); 

                //evaluates the ODE and stores in F,dF,M arrays 

                genODE(); 

                //for loops calculate the V U W unit vector and pressure 

values for each grid point 

                //Since [0][0][0] corresponds to (-resolution,-resolution,0) 

Xmin is added to the X coordinate and 

                //Ymin to the Y coordinate to achieve the neccesary matrix 

corrections 

                for (int zCor = 0; zCor < Zmax; zCor++) { 

                    for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                        for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                            V[xCor][yCor][zCor] = calcV(xCor + Xmin, yCor + 

Ymin, zCor); 

                            U[xCor][yCor][zCor] = calcU(xCor + Xmin, yCor + 

Ymin, zCor); 

                            W[xCor][yCor][zCor] = calcW(xCor + Xmin, yCor + 

Ymin, zCor); 

                            //pressure has an additional resolution variable 

for use in Euler Integration 
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                            P[xCor][yCor][zCor] = calcP(xCor + Xmin, yCor + 

Ymin, zCor,200); 

                        } 

                    } 

                } 

                try { 

                    System.out.println("Starting data export"); 

                    //calls function that exports data into .csv format 

                    exportData(); 

                } catch (IOException e) { 

                    e.printStackTrace(); 

                } 

            //each of the following initializes a new thread object with a 

runnable that will execute the operations 

            //to trace one individual particle 

            //they run simultaneously resulting in speed up 

            Thread t = new Thread(new Runnable() { 

                public void run() { 

                    try { 

                        partTrace(50, 50, 990, 0, 0, 

0,1,(float)0.1,(float)0.1,(float)0.1,1); 

                    } catch (IOException e) { 

 

                    } 

                } 

            }); 

            t.start(); 

            Thread t1 = new Thread(new Runnable() { 

                public void run() { 

                    try { 

                        partTrace(50, 50, 990, 0, 0, 

0,1,(float)0.25,(float)0.25,(float)0.25,2); 

                    } catch (IOException e) { 

 

                    } 

                } 

            }); 

            t1.start(); 

            Thread t2 = new Thread(new Runnable() { 

                public void run() { 

                    try { 

                        partTrace(50, 50, 990, 0, 0, 

0,10,(float)0.5,(float)0.5,(float)0.5,3); 

                    } catch (IOException e) { 

 

                    } 

                } 

            }); 

            t2.start(); 

            Thread t3 = new Thread(new Runnable() { 

                public void run() { 

                    try { 

                        partTrace(50, 50, 990, 0, 0, 

0,10,(float)1,(float)1,(float)1,4); 

                    } catch (IOException e) { 

 

                    } 
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                } 

            }); 

            t3.start(); 

            Thread t4 = new Thread(new Runnable() { 

                public void run() { 

                    try { 

                        partTrace(50, 50, 990, 0, 0, 

0,100,(float)3.2,(float)3.2,(float)3.2,5); 

                    } catch (IOException e) { 

 

                    } 

                } 

            }); 

            t4.start(); 

    } 

    public static void partTrace(float x, float y, float z, float vx, float 

vz, 

            float vy,float Mp, float Cdx,float Cdy,float Cdz, int 

partCounter) throws IOException { 

        //multithreaded version of partTrace method used in KuoTest 

        //uses Lagrangian particle equations to calculate motion of particle 

given surrounding volecities 

        //cheif difference is this loop uses compartmentalized variables 

rather than global to allow for multithreading 

        float[] traceX = new float[(int) (T / dT) + 1]; 

        float[] traceY = new float[(int) (T / dT) + 1]; 

        float[] traceZ = new float[(int) (T / dT) + 1]; 

        float[] traceVx = new float[(int) (T / dT) + 1]; 

        float[] traceVy = new float[(int) (T / dT) + 1]; 

        float[] traceVz = new float[(int) (T / dT) + 1]; 

        long sT = System.currentTimeMillis(); 

        //sets initial values for the particle 

                float x0 = x, y0 = y, z0 = z, Vpx = vx, Vpy = vy, Vpz = vz; 

                //initiliazes current time value 

                double t = 0; 

                //cT, when multiplied by t, calculates the correct array 

index for the t value 

                int cT=(int) (1/dT); 

                //fills 0 slot in arrays with starting conditions 

                traceX[(int) (t * cT)] = x0; 

                traceY[(int) (t * cT)] = y0; 

                traceZ[(int) (t * cT)] = z0; 

                traceVx[(int) (t * cT)] = Vpx; 

                traceVy[(int) (t * cT)] = Vpy; 

                traceVz[(int) (t * cT)] = Vpz; 

                //fills starting conditions into an array to be used in RK4 

                double stats[]={x0,y0,z0,Vpx,Vpy,Vpz}; 

                //iterates through T values from 0 to T 

                do { 

                    t += dT; 

                    //uses an fourth order Runge Kutta method to calculate 

the x,y,z,vx,vy,vz at the next time step 

                    stats=rk41(T,dT,stats,Mp,Cdx,Cdy,Cdz); 

                    //stores new x,y,z,Vx,Vy,Vz values into corresponding 

arrays at correct index at restarts process till t=T 

                    traceX[(int) (t * cT)]=(float) stats[0]; 

                    traceY[(int) (t * cT)]=(float) stats[1]; 
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                    traceZ[(int) (t * cT)]=(float) stats[2]; 

                    traceVx[(int) (t * cT)]=(float) stats[3]; 

                    traceVy[(int) (t * cT)]=(float) stats[4]; 

                    traceVz[(int) (t * cT)]=(float) stats[5]; 

                } while (t <= T); 

 

        System.out.println("Part trace took: " 

                + (System.currentTimeMillis() - sT)+" "+partCounter); 

        FileWriter writer = new FileWriter(file + "\\PartData" + partCounter 

                + ".csv"); 

        writer.append("Time"); 

        writer.append(","); 

        writer.append("X0"); 

        writer.append(","); 

        writer.append("Y0"); 

        writer.append(","); 

        writer.append("Z0"); 

        writer.append(","); 

        writer.append("Vpx"); 

        writer.append(","); 

        writer.append("Vpy"); 

        writer.append(","); 

        writer.append("Vpz"); 

        writer.append(","); 

        writer.append("R"); 

        writer.append("\n"); 

        for (float i = 0; i < (100 * T); i++) { 

            Float calc = i / 100; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceX[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceY[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceZ[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceVx[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceVy[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = traceVz[(int) i]; 

            writer.append("" + calc); 

            writer.append(","); 

            calc = (float) Math.sqrt(traceVx[(int) i] * traceVx[(int) i] 

                    + traceVy[(int) i] * traceVy[(int) i]); 

            writer.append("" + calc); 

            writer.append("\n"); 

            writer.flush(); 

        } 

        writer.close(); 

    } 
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    public static double[] rk41(double x, double h, double[] y,float Mp, 

float Cdx, float Cdy, float Cdz) { 

        //implements Fourth Order Runge Kutta with derivpd as f(),returns 

array with all 

        //timestep values x,y,z,Vx,Vy,Vz moved up a step 

        double[] f = derivpd(x, y,Mp,Cdx,Cdy,Cdz); 

        double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1], 

                y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a,Mp,Cdx,Cdy,Cdz); 

        double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1], 

                y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4], 

                y[5] + 0.5 * k[5] }; 

        f = derivpd(x + 0.5 * h, a,Mp,Cdx,Cdy,Cdz); 

        double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2], 

                y[3] + k3[3], y[4] + k3[4], y[5] + k3[5] }; 

        f = derivpd(x + h, a,Mp,Cdx,Cdy,Cdz); 

        double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4], h * f[5] }; 

        a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6, 

                y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6, 

                y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6, 

                y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6, 

                y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6, 

                y[5] + (k[5] + 2 * (k2[5] + k3[5]) + k4[5]) / 6 }; 

        return a; 

    } 

 

    public static double[] derivpd(double t, double[] y,float Mp, float 

Cdx,float Cdy, float Cdz) { 

        //gets the i,j,k unit vector values calculated by Kuos model at the 

particles current postion 

        int ix=(int) ((y[0]/resolution)+Xmax); 

        int iy=(int) ((y[1]/resolution)+Ymax); 

        int iz=(int) ((y[2]/resolution)); 

        float Vfx=0,Vfy=0,Vfz=0; 

        Vfx=Vx[ix][iy][iz]; 

        Vfy=Vy[ix][iy][iz]; 

        Vfz=W[ix][iy][iz]; 

        //calculates the particles next Vx,Vy,Vz  

        double Fx=(Cdx*Math.abs(Vfx-y[3])*(Vfx-y[3]))/Mp; 

        double Fy=(Cdy*Math.abs(Vfy-y[4])*(Vfy-y[4]))/Mp; 

        double Fz=(Cdz*Math.abs(Vfz-y[5])*(Vfz-y[5]))/Mp-9.81; 

        //returns new x,y,z,Vx,Vy,Vz values for next time step 

        double a[]= {y[3],y[4],y[5],Fx,Fy,Fz}; 

        return a; 

    } 

 

    public static void exportData() throws IOException { 

        //exports data using the .csv file format 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 
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        chooser.showSaveDialog(null); 

        file = chooser.getSelectedFile().getPath(); 

        float v, u, w, angle, pr, f, df, m; 

        FileWriter writer = new FileWriter(file + "\\VectData.csv"); 

        int counter = 0; 

        writer.append("XCor"); 

        writer.append(","); 

        writer.append("YCor"); 

        writer.append(","); 

        writer.append("ZCor"); 

        writer.append(","); 

        writer.append("r"); 

        writer.append(","); 

        writer.append("Vx"); 

        writer.append(","); 

        writer.append("Vy"); 

        writer.append(","); 

        writer.append("Vz"); 

        writer.append(","); 

        writer.append("v"); 

        writer.append(","); 

        writer.append("u"); 

        writer.append(","); 

        writer.append("w"); 

        writer.append(","); 

        writer.append("f"); 

        writer.append(","); 

        writer.append("df"); 

        writer.append(","); 

        writer.append("m"); 

        writer.append(","); 

        writer.append("Pressure"); 

        writer.append("\n"); 

        for (int zCor = 0; zCor < Zmax; zCor++) { 

            for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

                for (int xCor = 0; xCor < (2 * Xmax); xCor++) { 

                    v = V[xCor][yCor][zCor]; 

                    w = W[xCor][yCor][zCor]; 

                    u = U[xCor][yCor][zCor]; 

                    pr = P[xCor][yCor][zCor]; 

                    f = F[xCor][yCor]; 

                    df = dF[xCor][yCor]; 

                    m = M[xCor][yCor]; 

                    if ((xCor + Xmin) * deltaR == 0 

                            && (yCor + Ymin) * deltaR == 0) 

                        angle = 0; 

                    else { 

                        angle = (float) Math.atan2((yCor + Ymin) * deltaR, 

                                (xCor + Xmin) * deltaR); 

                        if (angle < 0) 

                            angle = (float) ((2 * Math.PI) + angle); 

                    } 

                    writer.write("" + ((xCor + Xmin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + ((yCor + Ymin) * deltaR)); 

                    writer.write(","); 

                    writer.write("" + (zCor * deltaR)); 
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                    writer.write(","); 

                    float x = (xCor + Xmin) * deltaR; 

                    float y = (yCor + Ymin) * deltaR; 

                    Float calc = (float) Math.sqrt(x * x + y * y); 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.cos(angle)) - (v * Math 

                            .sin(angle))); 

                    Vx[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    calc = (float) ((u * Math.sin(angle)) + (v * Math 

                            .cos(angle))); 

                    Vy[xCor][yCor][zCor] = calc; 

                    writer.write("" + calc); 

                    writer.write(","); 

                    writer.write("" + w); 

                    writer.write(","); 

                    writer.write("" + v); 

                    writer.write(","); 

                    writer.write("" + u); 

                    writer.write(","); 

                    writer.write("" + w); 

                    writer.write(","); 

                    writer.append("" + f); 

                    writer.append(","); 

                    writer.append("" + df); 

                    writer.append(","); 

                    writer.append("" + m); 

                    writer.append(","); 

                    writer.write("" + pr); 

                    writer.write("\n"); 

                    counter++; 

                    writer.flush(); 

                } 

            } 

        } 

 

        writer.close(); 

        System.out.println(counter); 

    } 

 

 

    public static float calcP(float x1, float y1, float z1, int res) { 

        //calculates pressure at each x,y,z gridpoint, res dictates 

"resolution" of Euler integration 

        float x = deltaR * x1, y = deltaR * y1, z = deltaR * z1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        if (r == 0) 

            r += 0.1; 

        float X = calcX(r); 

        float total = 0; 

        float dR = X / res; 

        for (int x2 = 2; x2 < res + 1; x2++) { 

            float b = x2 * dR; 

            float bn = (x2 - 1) * dR; 

            float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 
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            float integ = (float) (0.5 * ((m * m / (b * b)) + (m * m / (bn * 

bn))) * dR); 

            total += integ; 

        } 

        return aP + ((b * p * R * R) / (8 * eV)) * total; 

    } 

 

    public static float calcV(float x1, float y1, float z1) { 

        //returns V value at each gridpoint 

        float x = deltaR * x1, y = deltaR * y1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        float m = M[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        if (r == 0) 

            r += 0.1; 

        if (x == 0 && y == -1000 && z1 == 0) 

            System.out.println(m + " " + x1 + " " + y1 + " " + ((R / r) * 

m)); 

 

        return (R / r) * m; 

    } 

 

    public static float calcU(float x1, float y1, float z1) { 

        //returns U value at each gridpoint 

        float x = deltaR * x1, y = deltaR * y1; 

        float r = (float) Math.sqrt(x * x + y * y); 

        float f = F[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        if (r == 0) 

            r += 0.1; 

        return (-10 * eV / r) * f; 

    } 

 

    public static float calcW(float x1, float y1, float z1) { 

        //returns W value at each gridpoint 

        float z = deltaR * z1; 

        float df = dF[(int) (x1 + Xmax)][(int) (y1 + Ymax)]; 

        return b * z * df; 

    } 

 

    public static void genODE() { 

        //calculates the various ODE values at each gridpoint in quadrant 1 

        //takes advantage of axi-symettry to translate to other quandrants 

        //stores into necessary arrays 

        for (int x = 0; x <= resolution; x++) { 

            for (int y = 0; y <= resolution; y++) { 

                float x1 = (x + Xmin) * deltaR; 

                float y1 = (y + Ymin) * deltaR; 

                float r = (float) Math.sqrt((x1 * x1) + (y1 * y1)); 

                float[] a = calcODE(calcX(r)); 

                F[x][y] = a[0]; 

                dF[x][y] = a[1]; 

                M[x][y] = a[3]; 

                // if(x==y) 

                // System.out.println("X "+x1+" Y ="+y1+" "+F[x][y]+" 

"+calcX(r)+" "+r); 

            } 

        } 

        for (int x = 0; x <= resolution; x++) { 
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            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

                F[x][y] = F[x][(resolution * 2) - y]; 

                dF[x][y] = dF[x][(resolution * 2) - y]; 

                M[x][y] = M[x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x >= resolution; x--) { 

            for (int y = (resolution * 2) - 1; y >= resolution; y--) { 

 

                F[x][y] = F[(resolution * 2) - x][(resolution * 2) - y]; 

                dF[x][y] = dF[(resolution * 2) - x][(resolution * 2) - y]; 

                M[x][y] = M[(resolution * 2) - x][(resolution * 2) - y]; 

            } 

        } 

        for (int x = (resolution * 2) - 1; x >= resolution; x--) { 

            for (int y = 0; y <= resolution; y++) { 

 

                F[x][y] = F[(resolution * 2) - x][y]; 

                dF[x][y] = dF[(resolution * 2) - x][y]; 

                M[x][y] = M[(resolution * 2) - x][y]; 

            } 

        } 

    } 

 

    public static float calcX(float r) { 

        //returns the x value when given r 

        return b * r * r / (4 * eV); 

    } 

 

    public static float[] calcODE(float X) { 

        //iterates through X and uses RK4 loop to get correct ODE values and 

return array in [F,F',F'',m,m'] format 

        double x, dx; 

        x = 0.01; 

        dx = b / eV; 

        double[] y = shoot; 

 

        while (x < X) { 

            x += dx; 

            y = rk4(x, dx, y); 

 

        } 

        float[] a = new float[y.length]; 

        for (int i = 0; i < y.length; i++) { 

            a[i] = (float) y[i]; 

        } 

        return a; 

    } 

 

    public static double[] rk4(double x, double h, double[] y) { 

        //solves ODE used in Kuo's equation through RK4 methodology 

        double[] f = integ(x, y); 

        double[] k = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        double[] a = new double[] { y[0] + 0.5 * k[0], y[1] + 0.5 * k[1], 

                y[2] + 0.5 * k[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] }; 

        f = integ(x + 0.5 * h, a); 
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        double[] k2 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + 0.5 * k2[0], y[1] + 0.5 * k2[1], 

                y[2] + 0.5 * k2[2], y[3] + 0.5 * k[3], y[4] + 0.5 * k[4] }; 

        f = integ(x + 0.5 * h, a); 

        double[] k3 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + k3[0], y[1] + k3[1], y[2] + k3[2], 

                y[3] + k3[3], y[4] + k3[4] }; 

        f = integ(x + h, a); 

        double[] k4 = new double[] { h * f[0], h * f[1], h * f[2], h * f[3], 

                h * f[4] }; 

        a = new double[] { y[0] + (k[0] + 2 * (k2[0] + k3[0]) + k4[0]) / 6, 

                y[1] + (k[1] + 2 * (k2[1] + k3[1]) + k4[1]) / 6, 

                y[2] + (k[2] + 2 * (k2[2] + k3[2]) + k4[2]) / 6, 

                y[3] + (k[3] + 2 * (k2[3] + k3[3]) + k4[3]) / 6, 

                y[4] + (k[4] + 2 * (k2[4] + k3[4]) + k4[4]) / 6 }; 

        return a; 

    } 

 

    public static double[] integ(double x, double[] y) { 

        //represents ODE fed as f() into RK4 

        double F = y[0]; 

        double dF = y[1]; 

        double ddF = y[2]; 

        double dddF = -(((F + 1) * ddF) - (dF * (dF - 1))) / x; 

        double dM = y[4]; 

        double ddM = (-F * dM) / x; 

        return new double[] { dF, ddF, dddF, dM, ddM }; 

    } 

 

    public static void genShoot() { 

        //uses various shooting methods to find correct initial values to 

store in shoot array 

        //uses bisect algorithm 

        double o = bisect(0.8,0.9); 

        double o1 = o * (o - 1); 

        double o2 = bisect1(0.1, 0.13, o, o1); 

        double yinit[] = { 0, o, o1, 0, o2 }; 

        shoot = yinit; 

        System.out.println("Shooter: " + o + " " + o1 + " " + o2); 

    } 

 

    public static double bisect(double minVal, double maxVal) { 

        //bisection algorithm specially configured to approximate F value 

        double x = minVal; 

        double fmin = F(minVal); 

        double tol = 0.003; 

        int maxiter = 100; 

        int k = 0; 

        while (k <= maxiter) { 

            x = (minVal + maxVal) / 2.0; 

            double fx = F(x); 

            k += 1; 

            if ((Math.abs(maxVal - minVal) / 2.0) < tol) 

                break; 

            if (sign(fmin) == sign(fx)) { 
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                minVal = x; 

                fmin = fx; 

            } else 

                maxVal = x; 

        } 

        if (k > maxiter) 

            System.err.println("Exceeded Maxiter"); 

        return x; 

    } 

 

    public static double bisect1(double minVal, double maxVal, double o1, 

            double o2) { 

        //bisection algorithm specially configured to approximate m value 

        double x = minVal; 

        double fmin = M(minVal, o1, o2); 

        double tol = 0.003; 

        int maxiter = 100; 

        int k = 0; 

        while (k <= maxiter) { 

            x = (minVal + maxVal) / 2.0; 

            double fx = M(x, o1, o2); 

            k += 1; 

            if ((Math.abs(maxVal - minVal) / 2.0) < tol) 

                break; 

            if (sign(fmin) == sign(fx)) { 

                minVal = x; 

                fmin = fx; 

            } else 

                maxVal = x; 

        } 

        if (k > maxiter) 

            System.err.println("Exceeded Maxiter"); 

        return x; 

    } 

 

    public static double F(double e) { 

        //returns F as requested by first bisect method 

        double f1 = e; 

        double f2 = f1 * (f1 - 1); 

        double yinit[] = { 0.0, f1, f2, 0.0, 0.12 }; 

        yinit = calcInteg1(yinit, 200); 

        return yinit[1]; 

    } 

 

    public static double M(double e, double o1, double o2) { 

        //returns m as requested by second bisect method 

        double m1 = e; 

        double yinit[] = { 0.0, o1, o2, 0.0, m1 }; 

        yinit = calcInteg1(yinit, 200); 

        return yinit[4]; 

    } 

 

    public static double[] calcInteg1(double y[], double X) { 

        //modified method of previous calcODE method specifically made to 

work with bisect methods 

        double x = 0.01; 

        double dx = 0.01; 
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        while (x < X) { 

            x += dx; 

            y = rk4(x, dx, y); 

 

        } 

        return y; 

    } 

 

    public static int sign(double x) { 

        //returns int depending on sign of x value 

        if (x < 0) 

            return -1; 

        else if (x > 0) 

            return 1; 

        else 

            return 0; 

    } 

} 

 

WoodWhite.java 

import java.io.FileWriter; 

import java.io.IOException; 

 

import javax.swing.JFileChooser; 

//java implementation of Wood-White Algebraic Powerlaw Function 

public class WoodWhite { 

    //k l n used to approximate powerlaw function 

    private static float k = (float) 0.93; 

    private static float l = (float) 0.96; 

    private static float n = (float) 1.6; 

    //eddy viscity 

    private static float eV=5; 

    //z at which the function will be evaluated at 

    private static float z=20; 

    //arrays containing inversed values of powerlaw 

    private static float[] O; 

    private static float[] E; 

    private static float[] V1; 

    private static JFileChooser chooser = new JFileChooser(); 

    private static float[] W1; 

    //radius value at which the maximum velocity occured 

    private static float Rmax = (float) 119.4774; 

    //step r(radius) will iterate at 

    private static float dR = (float) 0.001; 

    //to be used for index correction 

    private static int ic = (int) (1 / dR); 

 

    public static void main(String[] args) { 

        //initializes arrays 

        E = new float[(int) (Rmax / dR)]; 

        V1 = new float[(int) (Rmax / dR)]; 

        O = new float[(int) (Rmax / dR)]; 

        W1 = new float[(int) (Rmax / dR)]; 
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        //iterates through r values getting and storing value of powerlaw 

function at each 

        for (float R = 0; R < Rmax; R += dR) { 

            int i = (int) (ic * R); 

            O[i] = calcO(R); 

            E[i]=calcE(R); 

            V1[i]=calcV1(R); 

            W1[i]=calcW1(R); 

        } 

         

        try{ 

            //exports in .csv 

            exportData(); 

        } 

        catch(Exception e){ 

             

        } 

        System.out.println("Done"); 

    } 

    public static void exportData() throws IOException{ 

        //exports data into .csv file 

        chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

        chooser.showSaveDialog(null); 

        String filename = chooser.getSelectedFile().getPath(); 

        FileWriter writer = new FileWriter(filename + "\\WWData.csv"); 

        writer.append("R"); 

        writer.append(","); 

        writer.append("v"); 

        writer.append(","); 

        writer.append("u"); 

        writer.append(","); 

        writer.append("w"); 

        writer.append("\n"); 

        for (int i = 0; i < O.length; i++) { 

            float R=i*dR; 

            writer.append(""+R); 

            writer.append(","); 

            //O value is v value 

            writer.append(""+O[i]); 

            writer.append(","); 

            //u value is eddy viscosity * dE 

            float U=eV*V1[i]; 

            writer.append(""+U); 

            writer.append(","); 

            //w value is eddy viscosity dW*z, should change with z but in 

order to save computing time 

            //was only calculated at one z 

            float W=z*W1[i]; 

            writer.append(""+W); 

            writer.append("\n"); 

            writer.flush(); 

        } 

 

        writer.close(); 

    } 

    public static float calcO(float R){ 

        //uses powerlaw function to approximate x value 
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        return (float) (Math.pow(R, k) / Math.pow( 

                1 + (k / n) * (Math.pow(R, n / l) - 1), l)); 

    } 

    public static float calcE(float R){ 

        //uses newton's finite differntiation to get dO 

        float d=0; 

        if(R==0) 

            d=(calcO(R+dR)-calcO(R))/dR; 

        else if(R==Rmax) 

            d=(calcO(R)-calcO(R-dR))/dR; 

        else 

            d=(calcO(R+dR)-calcO(R-dR)/(dR*2)); 

        if(R==0) 

            return (float) (d+(calcO(R)/0.01)); 

        return d+(calcO(R)/R); 

    } 

public static float calcV1(float R){ 

    //uses newtons finite differntiation to get dE 

    float d=0; 

    if(R==0) 

        d=(calcE(R+dR)-calcE(R))/dR; 

    else if(R==Rmax) 

        d=(calcE(R)-calcE(R-dR))/dR; 

    else 

        d=(calcE(R+dR)-calcE(R-dR)/(dR*2)); 

    return d/calcE(R); 

} 

public static float calcW1(float R){ 

    //uses newtons finite differentiation to get dW 

    float d=0; 

    if(R==0) 

        d=(calcV1(R+dR)-calcV1(R))/dR; 

    else if(R==Rmax) 

        d=(calcV1(R)-calcV1(R-dR))/dR; 

    else 

        d=(calcV1(R+dR)-calcV1(R-dR)/(dR*2)); 

    if(R==0) 

        return -(d+(calcV1(R)/dR)); 

    return -(d+(calcV1(R)/R)); 

} 

} 

Database Export Method 
public static void recordTest() { 

  try { 

   // System.out.println( 

Class.forName("org.hsqldb.jdbcDriver")); 

   Class.forName("com.mysql.jdbc.Driver").newInstance(); 

   conn = DriverManager.getConnection(dburl, user, 

password); 

   // System.out.println("Database connection 

established"); 

  } catch (Exception ex) { 

   ex.printStackTrace(); 

   JOptionPane 

     .showMessageDialog( 

       null, 
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       "Did you forget to start 

the database?. The program will stop and you can restart.", 

       "Database Error", 

JOptionPane.ERROR_MESSAGE); 

   System.exit(99); 

  } 

  Statement st; 

  ResultSet rs = null; 

  float v, u, w, angle, pr; 

  // store start step in the database 

  // store the timestamp and get the runID from the database 

  long timeMillis = System.currentTimeMillis(); 

   

  Timestamp startTime = new Timestamp(timeMillis); 

  UUID uuid = UUID.randomUUID(); 

  long timeNano = System.nanoTime(); 

  uuid.toString(); 

  System.out.println("Program took " 

    + (System.nanoTime() - timeNano) 

    + " to do the tostringing"); 

  String stringUUID = uuid.toString(); 

  try { 

   st = conn.createStatement(); 

   st.execute("CREATE  TABLE IF NOT EXISTS 

`Vortexes`.`RUN" 

     + stringUUID 

     + "` (`XCOR` FLOAT NULL , `YCOR` FLOAT 

NULL ," 

     + "`ZCOR` FLOAT NULL ,`R` FLOAT NULL 

,`VX` FLOAT NULL ,`VY` FLOAT NULL ,`VZ` FLOAT NULL ," 

     + "`V` FLOAT NULL ,`U` FLOAT NULL ,`W` 

FLOAT NULL ,`PRESSURE` FLOAT NULL )"); 

    

   for (int zCor = 0; zCor < Zmax; zCor++) { 

    for (int yCor = 0; yCor < (2 * Ymax); yCor++) { 

     timeNano = System.nanoTime(); 

     for (int xCor = 0; xCor < (2 * Xmax); 

xCor++) { 

      v = V[xCor][yCor][zCor]; 

      w = W[xCor][yCor][zCor]; 

      u = U[xCor][yCor][zCor]; 

      pr = P[xCor][yCor][zCor]; 

      if ((xCor + Xmin) * deltaR == 0 

        && (yCor + Ymin) 

* deltaR == 0) 

       angle = 0; 

      else { 

       angle = (float) 

Math.atan2((yCor + Ymin) * deltaR, 

         (xCor + 

Xmin) * deltaR); 

       if (angle < 0) 

        angle = (float) 

((2 * Math.PI) + angle); 

      } 

      float x = (xCor + Xmin) * 

deltaR; 
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      float y = (yCor + Ymin) * 

deltaR; 

      Float r = (float) Math.sqrt(x * 

x + y * y); 

      Float vX = (float) ((u * 

Math.cos(angle)) - (v * Math 

        .sin(angle))); 

      if (vX.equals(Float.NaN)) 

       System.out.println(u + " 

" + v + " " + xCor + " " 

         + yCor + 

" " + H[0][0]); 

      Float vY = (float) ((u * 

Math.sin(angle)) + (v * Math 

        .cos(angle))); 

      if (vY.equals(Float.NaN)) 

       System.out.println(u + " 

" + v + " " + xCor + " " 

         + yCor + 

" " + H[0][0]); 

       

      String sql = "insert into 

`Vortexes`.`run" 

        + stringUUID 

        + "` 

(XCOR,YCOR,ZCOR,R,VX,VY,VZ,V,U,W,PRESSURE) values (" 

        + x + "," + y + 

"," + zCor * deltaR + "," + r 

        + "," + vX + "," 

+ vY + "," + w + "," + v + "," 

        + u + "," + w + 

"," + pr + ");"; 

      System.out.println(sql); 

      st.execute(sql); 

       

       

     } 

     /*System.out.println("Program took " 

       + (System.nanoTime() - 

timeNano) 

       + " to do the single 

loop");*/ 

 

    } 

 

   } 

   System.out.println("Program took " 

     + (System.currentTimeMillis() - 

timeMillis) 

     + " to do the sqling"); 

   //System.out.println(wholeStatement.toString()); 

   System.out.println("Program took " 

     + (System.currentTimeMillis() - 

timeMillis) 

     + " to do the exporting"); 

   // st.executeQuery("CHECKPOINT"); 
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  } catch (SQLException e) { 

 

   e.printStackTrace(); 

  } 

 } 

 

Python 

kuoTest.py 

import numpy 

import matplotlib.pyplot as plt 

#graphs values of U,V,W, F, F', and M versus R using matplotlib 

#served as testbed for java application 

#implements Kuo's equations 

lu=[] 

lv=[] 

lw=[] 

lx=[] 

lf=[] 

lf1=[] 

lm=[] 

lp=[] 

lt=[] 

b=0.01 

R=7500 

eV=5 

r=0.1 

dR=4 

X=0 

t=0.01 

dt=b/eV 

aP=100000 

p=1 

global o 

global o1 

def integ(x, state): 

    F,dF,ddF,M,dM = state 

    dddF=-(((F+1)*ddF)-(dF*(dF-1)))/x 

    ddM = (-F * dM) / x 

    return numpy.array([dF,ddF,dddF,dM,ddM]) 

def rk4(x, h, y, f): 

    k1 = h * f(x, y) 

    k2 = h * f(x + 0.5*h, y + 0.5*k1) 

    k3 = h * f(x + 0.5*h, y + 0.5*k2) 

    k4 = h * f(x + h, y + k3) 

    return x + h, y + (k1 + 2*(k2 + k3) + k4)/6.0 

def calcX(r): 

    return b*r*r/(4*eV) 

def calcU(r,f): 

    return (-2*eV/r)*f 

def calcV(r,m): 

    return (R/r)*m 

def calcW(z,dF): 
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    return b*z*dF 

def calcInteg(X): 

    t=0.01 

    dt=b/eV 

    y= numpy.array([0, -0.85, 1.5725, 0, 0.12]) 

    while t<X: 

        t,y= rk4(t,dt,y,integ) 

    return y 

def calcPres(X, m,res): 

    total=0 

    deltaR=X/res 

    for x in range (2,res+1): 

        r=x*deltaR 

        rn=(x-1)*deltaR 

        integ=0.5*((m*m/(r*r))+(m*m/(rn*rn)))*deltaR 

        total+=integ 

    print total 

    return total,aP+((b*p*R*R)/(8*eV))*total 

def calcInteg1(y,X): 

    t=0.01 

    dt=0.01 

    while t<X: 

        t,y= rk4(t,dt,y,integ) 

    return y 

def F(e): 

    f1=e 

    f2=f1*(f1-1.) 

    yinit=numpy.array([0.,f1,f2,0.0,0.12]) 

    yinit=calcInteg1(yinit,200) 

    #print yinit[0]," ",yinit[1]," ",yinit[2]," ",yinit[3]," ",yinit[4] 

    return yinit[1] 

def M(e): 

    m1=e 

    yinit=numpy.array([0.,o,o1,0.,m1]) 

    yinit=calcInteg1(yinit,200) 

    #print yinit[0]," ",yinit[1]," ",yinit[2]," ",yinit[3]," ",yinit[4] 

    return yinit[4] 

def sign( x ): 

    if x < 0: 

        return -1 

    elif x > 0: 

        return 1 

    else: 

        return 0 

 

def bisect( f, minVal, maxVal): 

    x  = minVal 

    fmin = f(minVal) 

    tol=0.003 

    maxiter=100 

    k = 0 

    while k <= maxiter: 

        x = (minVal + maxVal) / 2.0 

        fx = f(x) 

        k +=1 

        if (abs(maxVal - minVal) / 2.0) < tol: 

            break 
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        if sign(fmin) == sign( fx ): 

            minVal, fmin = ( x, fx ) 

        else: 

            maxVal = x 

    if k > maxiter: 

        print "Error: exceeded %d iterations" % maxiter 

    else: 

        return x 

o=bisect(F,-0.9,-0.8) 

o1=o*(o-1.) 

o2=bisect(M,0.1,0.13) 

print "F' %10f F'' %10f M' %10f"%(o,o1,o2) 

g= numpy.array([0, o, o1, 0, o2]) 

print g 

while r<500: 

    X=calcX(r) 

    while t<X: 

        t,g= rk4(t,dt,g,integ) 

    lx.append(r) 

    u=calcU(r,g[0]) 

    w=calcW(1000,g[1]) 

    v=calcV(r,g[3]) 

    total,pS=calcPres(X,g[3],200) 

     

    lf.append(g[0]) 

    lf1.append(g[1]) 

    lm.append(g[3]) 

    lu.append(u) 

    lw.append(w) 

    lv.append(v) 

    lp.append(pS) 

    lt.append(total) 

    print("%10f %10f %10f %10f %10f %10f" %(r,u,v,w,pS,g[0])) 

    r+=dR  

plt.figure(1) 

plt.plot(lx,lf,color="g",label="F vs r") 

plt.plot(lx,lf1,color="r",label="F' vs r") 

plt.plot(lx,lm,color="b",label="M vs r") 

plt.legend() 

plt.figure(2) 

plt.plot(lx,lu,color="g",label="U vs r") 

plt.plot(lx,lv,color="r",label="V vs r") 

plt.plot(lx,lw,color="b",label="W vs r") 

plt.legend() 

plt.figure(3) 

plt.plot(lx,lp,color="y",label="P vs r") 

plt.legend() 

plt.show() 

 

wwTest2.py 

import numpy 

import matplotlib.pyplot as plt 

#graphs values of U,V,W, and powerlaw values versus R using matplotlib 
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#served as testbed for java application 

#implements Wood-White equations 

n=1.6 

k=0.93 

l=0.96 

ic=1/0.01 

Rmax=2 

dR=0.001 

cor=1./dR 

R=numpy.arange(0,Rmax,dR) 

O=numpy.arange(0,Rmax,dR) 

E=numpy.arange(0,Rmax,dR) 

V=numpy.arange(0,Rmax,dR) 

W=numpy.arange(0,Rmax,dR) 

def calcO(r): 

    return numpy.power(r,k)/numpy.power(1+(k/n)*(numpy.power(r,n/l)-1),l) 

def calcE(O): 

    E=numpy.arange(0,Rmax,dR) 

    a=len(O) 

    for x in range(0,a): 

        if(x==0): 

            d=(O[x+1]-O[x])/dR 

            E[x]=d+(O[x]/cor) 

        elif(x==a-1): 

            #print x 

            d=(O[x]-O[x-1])/dR 

            c=float(x)/cor 

            E[x]=d+(O[x]/c) 

        else: 

            d=(O[x+1]-O[x-1])/(dR*2) 

            c=float(x)/cor 

            E[x]=d+(O[x]/c) 

    return E 

def calcV(E): 

    V=numpy.arange(0,Rmax,dR) 

    dE=numpy.arange(0,Rmax,dR) 

    a=len(E) 

    for x in range(0,a): 

        if(x==0): 

            d=(E[x+1]-E[x])/dR 

            V[x]=d/E[x] 

            dE[x]=d 

        elif(x==a-1): 

            #print x 

            d=(E[x]-E[x-1])/dR 

            V[x]=d/E[x] 

            dE[x]=d 

        else: 

            d=(E[x+1]-E[x-1])/(dR*2) 

            V[x]=d/E[x] 

            dE[x]=d 

    return dE,V 

def calcW(V): 

    W=numpy.arange(0,Rmax,dR) 

    dde=numpy.arange(0,Rmax,dR) 

    a=len(V) 
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    for x in range(0,a): 

        if(x==0): 

            d=(V[x+1]-V[x])/dR 

            W[x]=-(d+(V[x]/dR)) 

            dde[x]=d 

        elif(x==a-1): 

            #print x 

            d=(V[x]-V[x-1])/dR 

            c=float(x)/cor 

            W[x]=-(d+(V[x]/c)) 

            dde[x]=d 

        else: 

            d=(V[x+1]-V[x-1])/(dR*2) 

            c=float(x)/cor 

            W[x]=-(d+(V[x]/c)) 

            dde[x]=d 

    return dde,W 

O=calcO(R) 

E=calcE(O) 

dE,V=calcV(E) 

ddE,W=calcW(V) 

plt.figure(1) 

plt.plot(R,O,color="r",label="O vs r") 

plt.legend() 

plt.figure(2) 

plt.plot(R,E,color="r",label="E vs r") 

plt.legend() 

plt.figure(3) 

plt.plot(R,10*V,color="r",label="V vs r") 

plt.legend() 

plt.figure(4) 

plt.plot(R,V*E,color="r",label="W vs r") 

plt.legend() 

plt.figure(5) 

plt.plot(R,dE,color="r",label="dE vs r") 

plt.legend() 

plt.figure(6) 

plt.plot(R,ddE,color="r",label="ddE vs r") 

plt.legend() 

plt.show() 

Cuda  
For those unfamiliar with CUDA, __device__ methods can only be called by the GPU, and __global__ 

methods can be called by both and are often the kernel. The kernel is called by a 

<<<blocksize,threadsize>>>kernalName() statement. 

tests_cuda3.cu (Euler Integration) 

//uses GPU to solve Sullivan's integrals 

#include <stdio.h> 

//RES is resolution*2 

#define RES 100 

#define E 2.71828182846 

__device__ float FunctionT(float t, int resolution){ 
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 //integrates Sullivan H function at each t value split accros 

resolution 

 float total = 0; 

 float dR = t / resolution; 

 int n=0; 

 for (n = 2; n <= resolution; n++) { 

  float r = (n) * dR; 

  float rn = ((n - 1)) * dR; 

  float e=E; 

  float integ = (float) (0.5 * (((1 - pow(e, -r)) / r) + ((1 - 

pow(e, -rn)) / rn)) * dR); 

  total += 3. * integ; 

 } 

 total = total - t; 

 return total; 

} 

__global__ void calcInteg(float *h,int resolution,int secRes){ 

  //grid split accross gpu x= blockId y = threadID for each 

process 

  //calculates the value of Sullivans integral using Euler 

integration at each gridpoint 

  float x=blockIdx.x; 

  float y=threadIdx.x; 

  int i=(RES*y)+x;     

  float x1 = (x -RES) * 9; 

  float y1 = (y -RES) * 9; 

  float r1 = (float) sqrt((x1 * x1) + (y1 * y1)); 

  float X=(float) (0.04 * r1 * r1) / (2 * 50); 

  float total = 0; 

  float dR1 = X / resolution; 

  int n; 

  for (n = 2; n <= resolution; n++) { 

   float r = (n) * dR1; 

   float rn = ((n - 1)) * dR1; 

   float e=E; 

   float integ = (float) (0.5 * (pow(e,FunctionT(r, 

secRes)) + pow(e,FunctionT(rn, secRes))) * dR1); 

   total += integ; 

  } 

  h[i]=total; 

} 

 

 

int main(){ 

 //initializes cudaEvents for timing 

 cudaEvent_t start,stop; 

 float elapsedTime; 

 //array to contain all H values 

 float h[RES][RES]; 

 //pointer for h for GPU use 

 float *ph; 

 //creates Events 

 cudaEventCreate(&start); 

 cudaEventCreate(&stop); 

 cudaEventRecord(start,0); 

 //allocates necessary space on GPU 

 cudaMalloc((void**) &ph, RES*RES*sizeof(float)); 
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 //calls the Kernel with RES blocks and RES threads to split grid over 

processes 

 calcInteg<<<RES,RES>>>(ph,200,200); 

 //copies values of now filled array on GPU to CPU counterparts 

 cudaMemcpy(h,ph,RES*RES*sizeof(float),cudaMemcpyDeviceToHost);  

 //stop time recorded 

 cudaEventRecord(stop); 

 cudaEventSynchronize(stop); 

 //elapsed time recorded and printed 

 cudaEventElapsedTime(&elapsedTime,start,stop); 

 printf("That took %f ms\n",elapsedTime); 

 //sampling of results printed into console 

 int x, y; 

 for(x=0;x<RES;++x){ 

  for(y=0;y<RES;++y){ 

   if(x==y) 

    printf("H at x=%d y=%d is %f\n",x,y,h[x][y]); 

  } 

 } 

 } 

 

KuoCuda3.cu 

#include <stdio.h> 

#include <math.h> 

//amount of loops RK4 will traverse 

#define N 5 

//this variable is the equivalent of resolution *2 

#define RES 100 

//maximum radius problem will be evaluated to 

#define Rmax 1000 

//divides Rmax by Res/2 to get distance between each gridpoint 

#define deltaR 1000/(RES/2) 

//suction strength of vortex 

#define B 0.01 

//density of air 

#define p 1 

//ambient pressure of air 

#define aP 10000 

//eddy viscosity of vortex 

#define eV 5 

//circulation strength of vortex  

#define R 7500 

#define PI 3.14159265359 

//sets up arrays containing F, F', m values of ODE and U,V,W and Pressure 

values at 

//each gridpoint 

static float f[RES][RES]; 

static float dF[RES][RES]; 

static float M[RES][RES]; 

static float U[RES*RES*RES/2]; 

static float V[RES*RES*RES/2]; 

static float W[RES*RES*RES/2]; 

static float P[RES*RES*RES/2]; 
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__device__ float integ(float x, float y[], int i) { 

 //represents Kuo's ODEs to be solved with RK4 

 //returns either F, F', F'', m, or m' depending on what was requested 

by RK4 loop 

 

 float ans; 

 if (i == 0) 

  ans = y[1]; /* derivative of first equation */ 

 if (i == 1) 

  ans = y[2]; /* derivative of second equation */ 

 if(i==2) 

  ans=-(((y[0] + 1) * y[2]) - (y[1] * (y[1] - 1))) / x; 

 if(i==3) 

  ans=y[4]; 

 if(i==4) 

  ans=(-y[0]*y[4])/x; 

 return ans; 

} 

__device__ void RK4(float x, float y[], float h) { 

 //solves ODE used in Kuo's equation through RK4 methodology 

 float t1[N], t2[N], t3[N], /* temporary storage arrays */ 

 k1[N], k2[N], k3[N], k4[N]; /* for Runge-Kutta */ 

 int i; 

 

 for (i = 0; i < N; i++) { 

  double m=k1[i] = h * integ(x, y, i); 

  t1[i] = y[i] + 0.5 *m; 

 } 

 

 for (i = 0; i < N; i++) { 

  double m=k2[i] = h * integ(x + 0.5*h, t1, i); 

  t2[i] = y[i] + 0.5 * m; 

 } 

 

 for (i = 0; i < N; i++) { 

  double m=k3[i] = h * integ(x + 0.5*h, t2, i); 

  t3[i] = y[i] + m; 

 } 

 

 for (i = 0; i < N; i++) { 

  k4[i] = h * integ(x + h, t3, i); 

 } 

 

 for (i = 0; i < N; i++) { 

  y[i] += (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6.0; 

 } 

} 

__device__ float calcX(float r){ 

 //returns X value for each r 

 return  (B * r * r) / (4 * eV); 

} 

__device__ void calcODE(float a[], float X){ 

 //calculates ODE values for each grid, stores newest values into array 

a 

 float x=0.01, dx=B/eV; 

 while(x<X){ 

  x+=dx; 
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  RK4(x,a,dx); 

 } 

} 

__device__ float calcU(float r1,float f){ 

  //returns U value at each gridpoint 

  float r=r1; 

  if (r == 0) 

   r += 0.01; 

  return (-10 * eV / r) * f; 

} 

__device__ float calcV(float r1,float m){ 

  //returns V value at each gridpoint 

  float r=r1; 

  if (r == 0) 

   r += 0.01; 

  return (R / r) * m; 

} 

__device__ float calcW(float z,float dF){ 

  //returns W value at each gridopint 

  return B * z * dF; 

} 

__device__ float calcP(float X,float m, int res) { 

  //uses Euler integration to find pressure at each gridpoint 

  float total = 0; 

  float dR = X / res; 

  int x2=0; 

  for (x2 = 2; x2 < res + 1; ++x2) { 

   float b = x2 * dR; 

   float bn = (x2 - 1) * dR; 

   float integ = (float) (0.5 * ((m * m / (b * b)) + (m * 

m / (bn * bn))) * dR); 

   total += integ; 

  } 

  return aP + ((B * p * R * R) / (8 * eV)) * total; 

 } 

__global__ void calcRK4(float *f, float *dF, float *M,float *u,float *v, 

float *w, float *pres){ 

  //initiates calculations for each gridpoint 

  //grid split accross gpu x= blockId y = threadID for each 

process 

  //uses axisymettry to cut down calculations through use of 

reflections 

  float x=blockIdx.x; 

  float y=threadIdx.x; 

  int i=(RES*y)+x; 

  int z;   

  float x1 = (x -(RES/2)) *deltaR; 

  float y1 = (y -(RES/2)) * deltaR; 

  float r1 = (float) sqrt((x1 * x1) + (y1 * y1)); 

  float a[5]; 

  //initial values copied from Java implemented shooting code 

  a[0]=0; 

  a[1]=-0.857; 

  a[2]=1.593; 

  a[3]=0; 

  a[4]=0.128; 

  calcODE(a,calcX(r1)); 
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  float f1=a[0]; 

  float df=a[1]; 

  float m=a[3]; 

  float U=calcU(r1,f1); 

  float V=calcV(r1,m); 

  float P=calcP(calcX(r1),m,500); 

  f[i]=f1; 

  dF[i]=df; 

  M[i]=m; 

  for(z=0;z<=(RES/2);++z){ 

   int i2=x + y * RES + z * RES * RES; 

   u[i2]=U; 

   v[i2]=V; 

   w[i2]=calcW(z*deltaR,df); 

   pres[i2]=P; 

  } 

  float x2=x; 

  float y2=RES-y; 

  i=(RES*y2)+x2; 

  f[i]=f1; 

  dF[i]=df; 

  M[i]=m; 

  for(z=0;z<(RES/2);++z){ 

   int i2=x2 + y2 * RES + z * RES * RES; 

   u[i2]=U; 

   v[i2]=V; 

   w[i2]=calcW(z*deltaR,df); 

   pres[i2]=P; 

  } 

  x2=RES-x; 

  y2=y; 

  i=(RES*y2)+x2; 

  f[i]=f1; 

  dF[i]=df; 

  M[i]=m; 

  for(z=0;z<(RES/2);++z){ 

   int i2=x2 + y2 * RES + z * RES * RES; 

   u[i2]=U; 

   v[i2]=V; 

   w[i2]=calcW(z*deltaR,df); 

   pres[i2]=P; 

  } 

  x2=RES-x; 

  y2=RES-y; 

  i=(RES*y2)+x2; 

  f[i]=f1; 

  dF[i]=df; 

  M[i]=m; 

  for(z=0;z<(RES/2);++z){ 

   int i2=x2 + y2 * RES + z * RES * RES; 

   u[i2]=U; 

   v[i2]=V; 

   w[i2]=calcW(z*deltaR,df); 

   pres[i2]=P; 

  } 

} 

 



88 
 

 

int main(){ 

 //initializes variables, cudaEvents store time each was recorded at 

 cudaEvent_t start,stop; 

 //elapsedTime in ms will be calced and stored in here 

 float elapsedTime; 

 //creates the Cuda events 

 cudaEventCreate(&start); 

 cudaEventCreate(&stop); 

 //pointers for use in mem operations 

 float *pf,*pdF,*pm,*u,*v,*w,*pres; 

 //start event recorded 

 cudaEventRecord(start,0); 

 //allocates sufficient memory for arrays in GPU ram 

 cudaMalloc((void**) &pf, RES*RES*sizeof(float)); 

 cudaMalloc((void**) &pdF, RES*RES*sizeof(float)); 

 cudaMalloc((void**) &pm, RES*RES*sizeof(float)); 

 cudaMalloc((void**) &u, RES*RES*(RES/2)*sizeof(float)); 

 cudaMalloc((void**) &v, RES*RES*(RES/2)*sizeof(float)); 

 cudaMalloc((void**) &w, RES*RES*(RES/2)*sizeof(float)); 

 cudaMalloc((void**) &pres, RES*RES*(RES/2)*sizeof(float)); 

 //calls the Kernel with Res/2+1 blocks and Res/2+1 threads 

 //this allows the calculations to be properly split accross the GPU 

 calcRK4<<<(RES/2)+1,(RES/2)+1>>>(pf,pdF,pm,u,v,w,pres); 

 //checks for errors in execution 

 cudaError_t error = cudaGetLastError(); 

 printf("%s\n",cudaGetErrorString(error)); 

 //copies now filled arrays on GPU into CPU counterparts 

 cudaMemcpy(f,pf,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(dF,pdF,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(M,pm,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(U,u,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(V,v,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(W,w,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(P,pres,RES*RES*(RES/2)*sizeof(float),cudaMemcpyDeviceToHost

); 

 //end event recorded 

 cudaEventRecord(stop); 

 cudaEventSynchronize(stop); 

 //ellapsed time recorded and printed 

 cudaEventElapsedTime(&elapsedTime,start,stop); 

 printf("That took %f ms\n",elapsedTime); 

 //results randomly sampled and printed to console 

 int o=0; 

 for(o=0;o<RES/2;++o){ 

  int i=o + o * RES + o * RES * RES; 

  printf("%f %f %f\n",V[i],W[i],U[i]); 

 

} 

 //results exported to .csv file 

 int x, y,z; 

 printf("Beggining Data Export\n"); 

 FILE *f= fopen("VectDataCuda.csv","w"); 

 if(f==NULL){ 

  printf("Error opening file\n"); 

  exit(1); 

 } 
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  fprintf(f,"XCor"); 

  fprintf(f,","); 

  fprintf(f,"YCor"); 

  fprintf(f,","); 

  fprintf(f,"ZCor"); 

  fprintf(f,","); 

  fprintf(f,"r"); 

  fprintf(f,","); 

  fprintf(f,"Vx"); 

  fprintf(f,","); 

  fprintf(f,"Vy"); 

  fprintf(f,","); 

  fprintf(f,"Vz"); 

  fprintf(f,","); 

  fprintf(f,"v"); 

  fprintf(f,","); 

  fprintf(f,"u"); 

  fprintf(f,","); 

  fprintf(f,"w"); 

  fprintf(f,","); 

  fprintf(f,"Pressure"); 

  fprintf(f,"\n"); 

  for (z = 0; z < RES/2; ++z) { 

   for (y = 0; y < RES; ++y) { 

    for (x = 0; x < RES; ++x) { 

     int i=x + y * RES + z * RES * RES; 

     float v = V[i]; 

     float w = W[i]; 

     float u = U[i]; 

     float p1=P[i]; 

     float xCor=(x -(RES/2)) * deltaR; 

     float yCor=(y -(RES/2)) * deltaR; 

     float zCor=z * deltaR; 

     float r=sqrt((xCor*xCor)+(yCor*yCor)); 

     float angle; 

     if (xCor == 0 && yCor == 0) 

      angle = 0; 

     else { 

      angle = (float) 

atan2(yCor,xCor); 

      if (angle < 0) 

       angle = (float) ((2 * 

PI) + angle); 

     } 

     float Vx = (float) ((u * cos(angle)) - 

(v * sin(angle))); 

     float Vy= (float) ((u * sin(angle)) + 

(v *cos(angle))); 

     fprintf(f, 

"%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n", xCor,yCor,zCor,r,Vx,Vy,w,v,u,w,p1); 

      } 

     } 

    } 

    fclose(f); 

} 
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RK4cuda.cu 

#include <stdio.h> 

#define N 5 

//RES is resolution *2 

#define RES 200 

//finds space between gridopoints with Rmax of 1000 

#define deltaR 1000/(RES/2) 

//defines suction strength of vortex 

#define B 0.01 

//denisty of air 

#define p 1 

//ambient pressure of air 

#define aP 10000 

//eddy viscosity of vortex 

#define eV 5 

//circulation strenght of vortex 

#define R 7500 

#define PI 3.14159265359 

__device__ float integ(float x, float y[], int i) { 

 //gets appropriated calculated ODE value based on query from RK4 loop 

 float ans; 

 if (i == 0) 

  ans = y[1]; /* derivative of first equation */ 

 if (i == 1) 

  ans = y[2]; /* derivative of second equation */ 

 if(i==2) 

  ans=-(((y[0] + 1) * y[2]) - (y[1] * (y[1] - 1))) / x; 

 if(i==3) 

  ans=y[4]; 

 if(i==4) 

  ans=(-y[0]*y[4])/x; 

 return ans; 

} 

__device__ void RK4(float x, float y[], float h) { 

 //uses RK4 methodology to solve ODE 

 float t1[N], t2[N], t3[N], /* temporary storage arrays */ 

 k1[N], k2[N], k3[N], k4[N]; /* for Runge-Kutta */ 

 int i; 

 

 for (i = 0; i < N; i++) { 

  double m=k1[i] = h * integ(x, y, i); 

  t1[i] = y[i] + 0.5 *m; 

 } 

 

 for (i = 0; i < N; i++) { 

  double m=k2[i] = h * integ(x + 0.5*h, t1, i); 

  t2[i] = y[i] + 0.5 * m; 

 } 

 

 for (i = 0; i < N; i++) { 

  double m=k3[i] = h * integ(x + 0.5*h, t2, i); 

  t3[i] = y[i] + m; 

 } 

 

 for (i = 0; i < N; i++) { 
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  k4[i] = h * integ(x + h, t3, i); 

 } 

 

 for (i = 0; i < N; i++) { 

  y[i] += (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6.0; 

 } 

} 

__device__ float calcX(float r){ 

 //returns X value for each r 

 return  (B * r * r) / (4 * eV); 

} 

__device__ void calcODE(float a[], float X){ 

 //runs the loop for RK4 solving of ODE 

 float x=0.01, dx=B/eV; 

 while(x<X){ 

  x+=dx; 

  RK4(x,a,dx); 

 } 

} 

__global__ void calcRK4(float *f, float *dF, float *M){ 

  //grid split accross gpu x= blockId y = threadID for each 

process 

  float x=blockIdx.x; 

  float y=threadIdx.x; 

  //array index calculated 

  int i=(RES*y)+x; 

  //real x values calculated     

  float x1 = (x -(RES/2)) *deltaR; 

  float y1 = (y -(RES/2)) * deltaR; 

  float r1 = (float) sqrt((x1 * x1) + (y1 * y1)); 

  float a[5]; 

  //initial values copied from Java implemented shooting code 

  a[0]=0; 

  a[1]=-0.857; 

  a[2]=1.593; 

  a[3]=0; 

  a[4]=0.128; 

  //calculated ODE values for each gridpoint 

  calcODE(a,calcX(r1)); 

  //stores into arrays and takes advantage of axi-symmetry to 

shorten calcuations 

  f[i]=a[0]; 

  dF[i]=a[1]; 

  M[i]=a[3]; 

  float x2=x; 

  float y2=RES-y; 

  i=(RES*y2)+x2; 

  f[i]=a[0]; 

  dF[i]=a[1]; 

  M[i]=a[3]; 

  x2=RES-x; 

  y2=y; 

  i=(RES*y2)+x2; 

  f[i]=a[0]; 

  dF[i]=a[1]; 

  M[i]=a[3]; 

  x2=RES-x; 
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  y2=RES-y; 

  i=(RES*y2)+x2; 

  f[i]=a[0]; 

  dF[i]=a[1]; 

  M[i]=a[3]; 

} 

 

 

int main(){ 

 //initializes variables to measure time in ms 

 cudaEvent_t start,stop; 

 float elapsedTime; 

 cudaEventCreate(&start); 

 cudaEventCreate(&stop); 

 //creates arrays contained ODE values at each point 

 float f[RES][RES],dF[RES][RES],M[RES][RES]; 

 //pointers for use in GPU 

 float *pf,*pdF,*pm; 

 //records start event 

 cudaEventRecord(start,0); 

 //allocates space in GPU 

 cudaMalloc((void**) &pf, RES*RES*sizeof(float)); 

 cudaMalloc((void**) &pdF, RES*RES*sizeof(float)); 

 cudaMalloc((void**) &pm, RES*RES*sizeof(float)); 

 //runs kernel with RES/2+1 blocks and RES/2+1 threads to calculate 

 //ODE values at each gridpoint in parallel 

 calcRK4<<<RES/2+1,RES/2+1>>>(pf,pdF,pm); 

 //copies filled arrays in GPU to CPU counterparts 

 cudaMemcpy(f,pf,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(dF,pdF,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 cudaMemcpy(M,pm,RES*RES*sizeof(float),cudaMemcpyDeviceToHost); 

 //records stop event and calculates and prints elapsed time 

 cudaEventRecord(stop); 

 cudaEventSynchronize(stop); 

 cudaEventElapsedTime(&elapsedTime,start,stop); 

 printf("That took %f\n",elapsedTime); 

 //prints random sampling of resuls to console 

 int x, y; 

 for(x=0;x<RES;++x){ 

  for(y=0;y<RES;++y){ 

    if(x==y) 

     printf("R at x=%d y=%d F is: 

%f\n",x,y,f[x][y]); 

  } 

 } 

} 

 


