
1

A Two-Step Policy Approach used in Cloud Web
Service Scheduling Problems

New Mexico

Supercomputing Challenge

Final Report

April 3rd, 2013

Team 59

Los Alamos Middle School

Team Members

Steven Chen

Teacher(s)

Pauline Stephens

Project Mentor

Hsing-Bung Chen

2

Table of Content

1 Executive Summary--Page 3

2 Introduction and problem---Page 4

2.1 Proposed approach to solve the web service problem --------------------------------------Page 4

2.2 Details the proposed two-step policies ---Page 5

2.2.1 Step-one: Job Selection Policy - two polices are applied -------------------------- page 5

2.2.2 Step-two: Server Selection Policy – three policies are applied--------------------- Page 6

2.3 Five “Two-step policy” are implemented in this project ---------------------------------- Page 6

2.3.1 FCFS-RR: First-Come-First-Served and Round-Robin Server Selection -------- Page 6

2.3.2 FCFS-SSQ: First-Come-First-Served and Shortest Server Queue Server Selection------

---Page6

2.3.3 SJF-RR: Shortest Job First and Round-Robin Server Selection-------------------- Page 6

2.3.4 SJF-SSQ: Shortest Job First and Shortest Server Queue Server Selection (using

number of job in a server queue)--- Page6

2.3.5 SJF-SSQ2: Shortest Job First and Shortest Server Queue Server Selection (using total

sum of job length in a server queue)-- Page6

3 NetLogo Simulation program design and implementation----------------------------------- Page7

3.1 Simulation system – agent design and implementation--------------------------------------- Page7

3.2 Simulation system State machine design and Implementation------------------------------ Page8

4 Performance results-- page9

4.1 Discussions-- Page10

5 Major Achievement -- Page14

6 Acknowledgment--- Page15

Reference--- Page15

Appendix – Netlogo program ---Page 16

3

1 Executive Summary

Inspired by problems in data center scheduling, I explore scheduling policies which work

best to handle the requests for cloud web data centers. Cloud Computing is a technology that
utilizes the internet and remote servers to maintain data and applications. Cloud computing
allows consumers and businesses to use applications without installation and access their
personal files at any computer with access to the internet. This technology allows for much more
efficient computing by centralizing data storage, processing and bandwidth. A data center,
known as a server farm or a computing room, is created to provide web services. The data center
consists of homogeneous computing server farms and very large scale storage systems. Many
large data centers are built to support global scale web-services such as: Google, Facebook,
Microsoft Windows Azure cloud server, and Amazon Simple Storage Service (S3). I intend to
model the cloud web service as a two-step operation. In step-one, each web based cloud service
request is treated as a task that needs computing and storage access. In step-two, I then find an
available computing server to handle that selected task. The concept of employing a two-step
scheduling policy is to combine the intelligent of task selection and server selection and find an
optimal solution to support an efficient cloud service model. For task selection, we adapt the
combination First-Come-First-Serve and Shortest-Job-First policies. For server selection, I use
the combination of Round-Robin and Shortest-Server-Queue-First policies. I then create five
two-step policies consisting of task and server policies. NetLogo [1][2] is used to develop these
five proposed two-step scheduling policies. I simulate various cloud service request workloads
on those five two step policies and conduct lengthy tests. I collect performance data in terms of
waiting time, queuing time, turnaround time, and server utilization. I use the results of numerous
tests to judge the qualities of each scheduling policy. Testing results show that Shortest-Job-First
and Shortest-Server-Queue-First had decent performance and produced better results in terms of
less queuing time and a quick turnaround time.

4

2 Introduction and Problem Statement

A server farm is a group of computing servers and data storage servers that are connected

through interconnected network systems such as Gigabit Ethernet network or 10 Gigabit Ethernet
network. Normally they are co-located in the same location. A server farm streamlines internal
processes by distributing the workload between the individual components of the farm and
expedites computing processes by harnessing the power of multiple servers. Typical server farm
infrastructure is shown in Figure 1.

The server farms rely heavily on load-balancing software that accomplishes tasks such as;

tracking demand for processing power from different machines, prioritizing the tasks, and
scheduling and rescheduling tasks depending on priority and demand that users put on the
network. When one server in the farm fails, another can step in as a backup. Combining servers
and processing power into a single entity has been relatively common for many years in research
and academic institutions. Today, more and more companies are utilizing server farms to handle
the enormous amount of tasks and services.

The problem with web server farms is that load imbalances may occur, some servers may
be idle with nothing to execute, while other serves are busy and with overloading assigned jobs.

A load balancer plays a key role in server farm architecture. It serves as a computing and

data traffic cop to direct the incoming requests to suitable servers. Load balancing is especially
important in cases where it is difficult to anticipate the potential number of requests that a server
farm will receive. The ultimate goal of the load balancer is to distribute jobs to the servers so that
no particular server is overwhelmed while others are relatively idle [3][4][5][6].

Many static and dynamic job scheduling approaches have been proposed and studied in

the past. Researchers are focusing on either the job-shop scheduling problem [7][8][9] or the
server workload scheduling problem [10][11][12].

2.1 Problem Approach

In this project, I apply a two-step policy approach that combines the job selection and

server selection policies. In the first step, two different job selection policies are applied to pick a
candidate arriving. In the second step, two different server selection policies are used to locate an
available server. Finally the two-step policy then assigns a job to a selected server. I use the
NetLogo agent based programming language to implement my proposed two-step policies. I test
my NetLogo program on several common benchmarks, and the results of the experiments show
that this two-step approach is quite effective and efficient.

5

2.2 Details the proposed two-step policies

2.2.1 Step-One: Job Selection Policy

Policy 1A FCFS: First Come and First Served

 The dispatcher selects job(s) based on the job’s arriving order. Jobs may or may not
arrive at the same time. Jobs that arrive at the same time will be dispatched at the same
time in random order.

Policy 1B SJF: Shortest Job First
The dispatcher selects job(s) based on the estimate processing time of jobs. Jobs with
shortest processing time are dispatched first.

Figure-1: Typical Server Farm Infrastructure.

Internet Backend-
Data

Servers

Load
Balancing and
Job
Dispatching
Servers

Web service
Job

Submission

Server Farm System Diagram
(Web Cloud Server Farm)

Frontend
Processing

Servers

Interconnected
network

6

2.2.2 Step-Two: Server Selection Policy

Purpose: Selecting An Available Server
The dispatcher selects an available server and assigns a selected job from Step-One
policy to this server. If this selected server is idle and available to execute a job, it
then starts to execute the job. If this selected server is currently executing a job, the
job is put in the server waiting queue.

Policy 2A: RR: Round Robin
Select servers in chronological order and looping until all jobs are distributed.

Policy 2B: SSQ: Shortest Server Queue using number of jobs in queue
Select a server with the minimum number of jobs is its job queue.

Policy 2C: SSQ2: Shortest Server Queue using total processing time of jobs in queue
Select a server with the minimum total processing time of jobs in queue

Conceptually, Policy 2C can present a more precise measure of the queuing workload in a server.

2.3 Five “Two-Step Policies”

2.3.1 FCFS-RR: First-Come-First-Served and Round-Robin Server Selection

2.3.2 FCFS-SSQ: First-Come-First-Served and Shortest Server Queue Server

Selection

2.3.3 SJF-RR: Shortest Job First and Round-Robin Server Selection

2.3.4 SJF-SSQ: Shortest Job First and Shortest Server Queue Server Selection

(using number of job in a server queue)

2.3.5 SJF-SSQ2: Shortest Job First and Shortest Server Queue Server Selection

(using total sum of job lengths in a server queue)

7

3 NetLogo Simulation Program Design and Implementation

3.1 Simulation System – Agent Design and Implementation

In this Netlogo simulation I create three different agents: Job Agent, Dispatcher agent,
and Server agent. The interaction between agents is handled through a state machine system
shown in Figure 3.

Job Agent:
 jobID, jobLength, arrivingTime, expectedStartingTime, dispatchedTime,
waitingTime, queuingTime, actualStartingTime, finishedTime, jobStatus,
turnaroundTime, JobServerID.

I create up to 1,000 job agents in my simulation program.

Figure 2: Two-Step Policy System Diagram of Multi-Agent Simulation Program

Dispatcher agent:
A dispatcher is used to pick an arriving job and select an available server to run this job.
Only one central Dispatcher is created in my simulation.

STEP1: Job Selection
Policy: FCFS and SJF

STEP2: Server Selection
Policy : RR,SSQ, and SSQ2

8

Server agent:
A server agent is used to process assigned jobs and record server performance
information during the simulation. A server agent record information such as
currentStartingTime, nextStartingTime, numberJobAssigned, numberJobProcessed,
numberJobFinished , and numberJobInQueue

Eight server agents are created in simulation.

3.2 Simulation System State

Seven states are designed to represent the various cycles of a web server job as shown in Figure
3. Run time actions of various state transitions are described as followed:

• State JOB-NOT-DISPATCHED: A job is set to this state when created
• State JOB-ASSIGNING: A job is moved to this state when its arriving time is equal to

the simulation wall-clock (Netlogo’s tick counter).
• State JOB-DISPATCHED: A job is moved to this state when it is dispatched to a

selected server.
• State JOB-WAITING-IN-QUEUE: A job is transferred to this state when a selected

server cannot execute this assigning job right away. This job is put into a server’s queue
and waits to be executed.

• State JOB-PROCESSING: A job is transferred to this state when a selected server can
execute the assigned job. This job’s previous state can be JOB-DISPATCHED or JOB-
WAITING-IN-QUEUE.

• State JOB-FINISHED: A job moved to this state when its scheduled finishing-time is
equal to the current wall-clock (Netlogo’s tick counter). This state also increases the
finished-job counter by one.

• State JOB-DONE: This state is reached when all created job are finished. This occurs
when the number of created jobs is equal to the number of finished jobs. Final
performance data is generated such as Average-Serverfarm-Utilization, Average-
TurnaroundTime, Average-Throughput, Average-WaitingTime, Average-
QueuingTime, Average-QueuingJob, Average-ProcessingTime

9

Figure 3: State transition Diagram

4 Performance results
To analyze performance of these five two-step scheduling policies I have conducted a

sequence of testing on this simulation program. I used performance metrics defined as followed.

AverageQueuingTime =

(∑(JobStartingTime - JobArrivingTime) / NumberOfJobCreated

This metric shows the ability of a scheduling policy to reduce job queuing time and
improve server efficiency. A lower value indicates a better response time for a job. It
shows how fast a job can be processed by a server after it has arrived. The system
queuing time is the interval between the arrival of a job and the start of processing this

10

job. It can be also referenced as the “response time”. A quick response time in web
streaming service has a strong effect on user satisfaction and usability.

AverageTurnAroundTime =

 (∑(JobTurnaroundTime) / NumberOfJobCreated

Turnaround time is the delay between submission of a job for a processing system and its
completion. This metric indicates the degree of satisfactory for a scheduling policy. Most
web service users expect to have a shorter turnaround time. Shorter turnaround time
means better service quality.

AverageServerUtilization =

(∑(TotalProcessingTime / TotalServerUpTime) / NumberofServer

This metric represents how a scheduling policy contributes to overall system power
consumption and cost-effectiveness. Higher values obtained from server utilization hints
that more jobs can be handled during the same amount of system up time. It is a quite
important success factor in today’s data center market. High server utilization can also
help to reduce infrastructure costs.

 Figure 4, Figure 5, and Figure 6 show that SJF-SSQ2 can out-perform the other four
policies with its “Shortest Job First” and “Shortest Server Queue Length” approach.

4.1 Discussions

FCFS-RR is easy to implement but it is lacking compared any intelligent policy in job
and server selection.

FCFS-SSQ and SJF-RR have similar performance because they both apply only one

intelligent approach when selecting a job or a server.

SJF-SSQ and SJF-SSQ2 have close performance results and both obtain better results

than FCFS-RR, FCFS-SJQ, and SJF-RR policies. Both two-step policies utilize two smart
selection methods.

11

 Figure 4: Average Queuing Time Comparison

 Figure 5: Average Turnaround Time Comparison.

0

20

40

60

80

100

120

FCFS-RR FCFS-SSQ SJF-RR SJF-SSQ SJF-SSQ2

Average Queuing Time Average Waiting Time

0

100

200

300

400

500

600

700

800

FCFS-RR FCFS-SSQ SJF-RR SJF-SSQ SJF-SSQ2

Average Turnaround Time Average Turnaround
Time

12

Figure 6: Average Server Utilization Comparison

SJF-SSQ2 can obtain a little better results comparing to SJF-SSQ because it uses
actual queuing workload as the server selection criteria. Simulation results justify this.

In Figure-7, the variance of number of jobs in each server queue is small because

SSQ uses the number of jobs in the server queue to decide which server should be picked
to handle a selected job from the Step-One policy. The variance total queuing job length
in each server queue is fairly large.

In Figure-8, SSQ2 uses the total amount of a job’s queuing length to locate a

server to processes a job. Figure-8 clearly shows a different scenario from Figure-7.

0.45

0.57 0.58

0.75
0.81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FCFS-RR FCFS-SSQ SJF-RR SJF-SSQ SJF-SSQ2

Server Utilization Server Utilization

13

Figure-7: SJF-SSQ , Number of Jobs In Queue vs. Server Workload Queuing

Figure-8: SJF-SSQ2, Number of Jobs In Queue vs. Server Workload Queuing

Figure-9 Illustrates a completed simulation of the SJF-SSQ2 method.

[A] Initially, the Job-Dispatcher keeps dispatching arriving jobs until all jobs are
dispatched. I assume in this case that each server has unlimited server queue so it can accept as
many jobs as possible.

[B] After all jobs are dispatched, servers continue to process jobs queued in each server.

We can see the queuing length of each server decreasing over time. It means that jobs are
removed from a server queue and are being executed.

[C] Also we can see that number of processing jobs and finished jobs are increasing over

time.

[D] Eventually we see (1) each server’s queue is empty, (2) and all jobs are finished.

Small variance between Servers:
Number of in server queue

Big variance between Servers:
Server total queuing workload

Big variance between Servers:
Number of Jobs in server queue

Small variance between Servers:
Server total queuing workload

14

The visualized patch area is used to animate the state transition procedure and workload

distribution
(Job DispatchJob QueuingJob ProcessingJob Finished)

Figure-9: A complete visualized SJF-SSQ2 simulation process

5 Major Achievement

Server farms are heavily deployed in today large data centers. The performance
bottleneck of a server farm is limited to the overall power resource and the power consumption.
Computing servers run 24/7 in server farms and consume vast amounts of electricity. I believe
that better server utilization from a well-designed job scheduling program can help to improve
system service quality and further reduce power consumption for handling the same amount of
web service requests. When a computing server can quickly handle service and reduce

C: Processing
and Finished
Job increasing

B: Queuing job
decreasing

D: End of
Simulation

Patch area: Animation
Job Transition Patching area
display server activities

A: All job
dispatched

Number of Queuing job
decreasing

Total Queuing job
workload decreasing

15

unnecessary idle time, it indicates that a server can move to deep sleep state and reduce power
consumption.

With the combination of job selection and sever selection, the SJF-SSQ and SJF-SSQ2

have clearly proved that they can reduce a job’s queuing-time, quickly return results to web
service jobs, and sustain better server utilization. My simulation has shown evidence supporting
this. My evidence further suggests that an efficient job dispatcher can maintain a balanced
workload among servers, decrease job turnaround time, and eventually receive a high degree of
customer satisfaction. Furthermore it shows a positive sign of using those methods to reduce
power consumption in large scale data centers.

6 Acknowledgments

 First, I would like to thank the Super-Computing Challenge program and the committee
members. The kickoff program at New Mexico Tech was especially helpful. Through this
project, I gained knowledge, useful information, and a variety of idea to implement in my
simulation program. Furthermore, we would like to thank the comments and suggestions from
my intern reviewing judges. I would also like thank our Supercomputing Challenge Project
teacher Mrs. Pauline Stephens for sponsoring my project and her constant encouragement
throughout these in the past five months. Her unwavering support for the past few months has
been amazing. In addition, I also would like to thank Ariel Chen for reviewing my report and
Mr. HB Chen for mentoring my project.

 Finally I would like to thank my parents for helping me prepare posters, editing the final
project report, and setting up different testing environments.

References
[1] NetLogo: http://ccl.northwestern.edu/netlogo/
[2] NetLogo 5.0.3 User Manual: Programming Guide,
[3] Mor Harchol-Balter Computer Science Dept, Carnegie Mellon University, “Scheduling in
Server Farms”, presentation 2007
[4] Varun Gupta Mor Harchol-Balter Karl Sigman Ward Whitt, “Analysis of Join-the-
Shortest-Queue Routing for Web Server Farms”, Performance 2007, Performance Evaluation,
Vol 64, Issues 9-12
[5] Anshul Gandhi, Mor Harchol-Balter,Rajarshi Das, Charles Lefurgy, “Optimal Power
Allocation in Server Farms”, CMU Technical Report March 2009, CMU-CS-09-113
[6] CPU scheduling, Duke Class note , http://www.cs.duke.edu/~chase/cps210-
archive/slides/cpu.pdf

http://www.cs.duke.edu/~chase/cps210-archive/slides/cpu.pdf
http://www.cs.duke.edu/~chase/cps210-archive/slides/cpu.pdf

16

[7] Walsh P., “A high-throughput computing environment for job shop scheduling (JSP)
genetic algorithms”, Evolutionary Computation, 2004. CEC2004. Congress on
[8] Albert Jones and Luis C. Rabelo, “Survey of Job Shop Scheduling Techniques”,
Published Online: 27 DEC 1999
[9] Anant Singh Jain and Sheik Meeran, “A State-of-art Review of Job-Shop Scheduling
Techniques”, Department of Applied Physics, electronic and Mechanical Engineering,
University of Dundee, Dundee, Scotland, UK DDI 4HN
[10] Richard Olejnik, Iyad Alshabani, Bernard Toursel, Eryk Laskowski, Marek Tudruj,
“Load balancing in the SOAJA Web Service Platform”, IEEE 2008 Proceedings of the
International Multiconference on Computer Science and Information Technology
[11] George Porter and Randy H. Katz, “Effective Web Service Load Balancing through
Statistical Monitoring”, Communications of ACM, March 2006
[12] Digvijay Singh Lamba , Pankaj Jalote , and Dheeraj Sanghi , “A Web Service for
evaluation of load balancing strategies for distributed web server systems”, Dept. of Computer
Sc. and Engg., IIT Kanpur

Appendix – Netlogo program
;; A Two Step Policy Approach used in Cloud Web Service Scheduling Problems
;;
;;
;; Implemented scheduling policy
;;
;; Two Step Policy: Job Selection aand Server Selection
;; 1. First-Come-First-Served and Round-Robin Server Selection: FCFS-RR
;; 2. First-Come-First-Served and Shortest Server Quque Server Selection : FCFS-SSQ
;; 3. Shortest Job First and Round-Robin Server Selection: SJF-RR
;; 4. Shortest Job First and Shortest Server Queue Server Selection: SJF-SSQ
;;
;; Performance Studies
;;
;; 1. Average Job Throughput
;; 2. Average Server- Farm Utilization
;; 3. Average Job Turnaround Time
;; 4. Average Job Waiting Time
;; 5. Job Scheduling Markspan

breed [dispatchers dispatcher] ;; 0

;; Job
breed [jobs job] ;; 1 - 1000

;; Server Farm
;; Fixed number of servers used in simulation
breed [ServerFarm Server] ;; 1001 to 1008

;; global variables
globals
[
 Number-Server-Used
 Number-of-jobs

 ;; First Come Fist Served Performance counters
 Average-Serverfarm-Utilization
 Average-TurnaroundTime

17

 Average-Throughput
 Average-WaitingTime
 Average-QueuingTime
 Average-QueuingJob
 Average-ProcessingTime

 Total-Server-Queuing-Job
 Total-Server-Queuing-Time

 MaxWaitingTime
 MaxQueuingTime
 MaxWaitingJob
 MaxQueuingJob

 Markspan

 FinalFinishedTime
 TotalProcessingTime
 TotalWaitingTime
 TotalQueuingTime
 TotalTurnaroundTime
 Current-Server-ID
 Next-Server-ID

 selectedServer
 TotalJobFinished
 TotalJobProcessing
 TotalJobWaiting
 TotalJobQueuing
 TotalJobDispatched
 TotalJobArriving
 TotalJobStarting
 TotalJobCreated

 ProcessingJob
 currentJobID
 terminatingSimulation

 numPolicyUsed ;; number of policy used in simulation
 numPolicyDone ;; number of policy done with simulation
 numJobCreated ;; number of Job created for simulation
 numServerUsed ;; number of server used in simulation
 numReportDone ;; number of performance report is done

 ;; Flag of POLICY
 POLICY-SELECTED
 POLICY-NOT-SELECTED
 POLICY-DONE
 POLICY-NOT-DONE

 ;; POLICY Select Status information
 FCFS-RR-policy-select-status
 FCFS-SSQ-policy-select-status
 SJF-RR-policy-select-status
 SJF-SSQ-policy-select-status
 SJF-SSQ2-policy-select-status
 ;; POLICY Status information
 policy-status

 MaxJobLength
 MaxQueueLength
 GlobalJobID
 CurrentJobWaiting
 CurrentJobQueuing

 selected-Server

 ;; JOB status related information
 JOB-UNKNOWN
 JOB-READY
 JOB-ARRIVING

18

 JOB-WAITING-IN-QUEUE
 JOB-STARTING
 JOB-PROCESSING
 JOB-FINISHED
 JOB-NOT-DISPATCHED
 JOB-DISPATCHED
 JOB-DONE

 Server121-QueueLength
 Server121-NumJobInQueue
 Server121-xcor
 Server122-QueueLength
 Server122-NumJobInQueue
 Server122-xcor
 Server123-QueueLength
 Server123-NumJobInQueue
 Server123-xcor
 Server124-QueueLength
 Server124-NumJobInQueue
 Server124-xcor
 Server125-QueueLength
 Server125-NumJobInQueue
 Server125-xcor
 Server126-QueueLength
 Server126-NumJobInQueue
 Server126-xcor
 Server127-QueueLength
 Server127-NumJobInQueue
 Server127-xcor
 Server128-QueueLength
 Server128-NumJobInQueue
 Server128-xcor

 jobWaiting-xcor
 jobWaiting-ycor
 jobArriving-xcor
 jobArriving-ycor
 jobDiapatched-xcor
 jobDispatched-ycor
 jobQueuing-xcor
 jobQueuing-ycor
 jobProcessing-xcor
 jobProcessing-ycor
 jobFinished-xcor
 jobFinished-ycor
]

;; Job agents own data
jobs-own
[
 jobID
 jobLength
 arrivingTime
 expectedStartingTime
 dispatchedTime
 waitingTime
 queuingTime
 startingTime
 finishedTime
 jobStatus
 lastJobStatus
 jobDispatchStatus
 turnaroundTime

 responseIndex ;; turnaroundTime - jobLength
 responseRatio ;; jobLength / turnaround

 jobServerID
 assignedServerID

19

 myjobWaiting-xcor
 myjobWaiting-ycor
 myjobArriving-xcor
 myjobArriving-ycor
 myjobDiapatched-xcor
 myjobDispatched-ycor
 myjobQueuing-xcor
 myjobQueuing-ycor
 myjobProcessing-xcor
 myjobProcessing-ycor
 myjobFinished-xcor
 myjobFinished-ycor
]

;; server own data
ServerFarm-own
[
 currentStartingTime
 nextStartingTime
 numberJobAssigned
 numberJobProcessed
 numberJobFinished
 numberJobInQueue ;; server queue length

 ServerWorkloadQueuing ;; sum of workload from current waiting job in queue

 Server-Average-Utilization
 Server-Average-TurnaroundTime
 Server-Average-Throughput
 Server-Average-ProcessingTime
 Server-Average-Queuing-Job

 Server-ResponseIndex
 Server-AverageResponseIndex
 Server-ResponseRatio
 Server-AverageResponseRatio

 ServerMaxQueuingJob

 Server-CurrentJobQueuing
 Server-totalProcessingTime
 Server-totalProcessedJob
 Server-xcoordinate
 Next-serverID
 serverID
]

dispatchers-own
[
 FCFS-RR-status
 FCFS-SSQ-status
 SJF-RR-status
 SJF-SSQ-status
 SJF-SSQ2-status

 TotalDispatchedJob
 TotalJobLength
 TotalArrivingJob
]

;;
;; setup procedure to initializ all globals data and reset tick counter to zero
;;
to setup
 clear-all

 init-globals ;; initialize global variables values

 ;; create one dispatcher
 ;; turtle 0 : dispatcher

20

 create-dispatchers 1 ;; id-0
 create-jobs Number-of-Jobs ;; 1 1000

 setup-Jobs-Info;;
 setup-Jobs-Patch-Info;;

 ;; create eight servers
 ;; turtle 1-
 create-ServerFarm Number-Server-Used ;; id 1001-1008

 ask ServerFarm [
 set serverID who
 set Next-serverID serverID + 1
 if serverID = 1009 [;; this rounf robin policy
 set Next-serverID 1001
]
]

 setup-dispatcher
 setup-ServerFarm
 reset-ticks
end

;;
;; setup schedule basic information
;;
to setup-dispatcher
 ask dispatcher 0 [
 set FCFS-RR-status POLICY-NOT-SELECTED
 set FCFS-SSQ-status POLICY-NOT-SELECTED
 set SJF-RR-status POLICY-NOT-SELECTED
 set SJF-SSQ-status POLICY-NOT-SELECTED
 set SJF-SSQ2-status POLICY-NOT-SELECTED
 set totalDispatchedJob 0
 set totalJobLength 0
 set totalArrivingJob 0
]
end

to setup-ServerFarm
 ask ServerFarm [
 set currentStartingTime 0
 set nextStartingTime 0
 set numberJobAssigned 0
 set numberJobProcessed 0
 set numberJobFinished 0
 set numberJobInQueue 0 ;; server queue length
 set ServerWorkloadQueuing 0 ;; sum of workload from current waiting job in queue
 set Server-Average-Utilization 0
 ;;set Server-Average-ToursounrTime 0
 set Server-Average-Throughput 0
 set Server-Average-ProcessingTime 0
 set Server-Average-Queuing-Job 0
 set maxQueuingJob 0
 set Server-CurrentJobQueuing 0
 set Server-totalProcessingTime 0
 set Server-totalProcessedJob 0
 set Server-ResponseIndex 0
 set Server-AverageResponseIndex 0
 set Server-ResponseRatio 0
 set Server-AverageResponseRatio 0
 set Next-serverID who
 set serverID who
 set Server-xcoordinate (who - 1000) * 16
]
end

to setup-Jobs-Patch-Info

 ask patches [

21

 set pcolor cyan
]

 ask jobs [
 ;;set jobID who ;; who is the turtle number assigned by the NetLogo system

 set jobWaiting-xcor 0
 set jobWaiting-ycor 24
 set jobDiapatched-xcor 0
 set jobDispatched-ycor 24
 set jobQueuing-xcor 0
 set jobQueuing-ycor 36
 set jobProcessing-xcor 0
 set jobProcessing-ycor 48
 set jobFinished-xcor 0
 set jobFinished-ycor 60
 let start-ycor 1
 set jobArriving-xcor jobID
 set jobArriving-ycor 12

 if jobID <= 15 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor white
]

 ask patch jobArriving-xcor 22 [
 set pcolor white
]

 ask patch jobArriving-xcor 34 [
 set pcolor white
]

 ask patch jobArriving-xcor 46 [
 set pcolor white
]

 ask patch jobArriving-xcor 58 [
 set pcolor white
]
 ask patch jobArriving-xcor 70 [
 set pcolor white
]
]

 set start-ycor 3
 if jobID > 15 [
 if jobID <= 30 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor yellow
]
 ask patch jobArriving-xcor 22 [
 set pcolor yellow
]

 ask patch jobArriving-xcor 34 [
 set pcolor yellow
]

 ask patch jobArriving-xcor 46 [
 set pcolor yellow
]

 ask patch jobArriving-xcor 58 [
 set pcolor yellow
]
 ask patch jobArriving-xcor 70 [
 set pcolor yellow

22

]
]
]

 set start-ycor 5
 if jobID > 30 [
 if jobID <= 45 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor red
]

 ask patch jobArriving-xcor 22 [
 set pcolor red
]

 ask patch jobArriving-xcor 34 [
 set pcolor red
]

 ask patch jobArriving-xcor 46 [
 set pcolor red
]

 ask patch jobArriving-xcor 58 [
 set pcolor red
]
 ask patch jobArriving-xcor 70 [
 set pcolor red
]

]
]

 set start-ycor 7
 if jobID > 45 [
 if jobID <= 60 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor blue
]

 ask patch jobArriving-xcor 22 [
 set pcolor blue
]

 ask patch jobArriving-xcor 34 [
 set pcolor blue
]

 ask patch jobArriving-xcor 46 [
 set pcolor blue
]
 ask patch jobArriving-xcor 58 [
 set pcolor blue
]
 ask patch jobArriving-xcor 70 [
 set pcolor blue
]

]
]

 set start-ycor 9
 if jobID > 60 [
 if jobID <= 75 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor green
]

23

 ask patch jobArriving-xcor 22 [
 set pcolor green
]

 ask patch jobArriving-xcor 34 [
 set pcolor green
]

 ask patch jobArriving-xcor 46 [
 set pcolor green
]

 ask patch jobArriving-xcor 58 [
 set pcolor green
]

 ask patch jobArriving-xcor 70 [
 set pcolor green
]

]
]

 set start-ycor 11
 if jobID > 75 [
 if jobID <= 90 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor brown
]

 ask patch jobArriving-xcor 22 [
 set pcolor brown
]

 ask patch jobArriving-xcor 34 [
 set pcolor brown
]

 ask patch jobArriving-xcor 46 [
 set pcolor brown
]

 ask patch jobArriving-xcor 58 [
 set pcolor brown
]
 ask patch jobArriving-xcor 70 [
 set pcolor brown
]

]
]

 set start-ycor 13
 if jobID > 90 [
 if jobID <= 105 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor pink
]

 ask patch jobArriving-xcor 22 [
 set pcolor pink
]

 ask patch jobArriving-xcor 34 [
 set pcolor pink

24

]

 ask patch jobArriving-xcor 46 [
 set pcolor pink
]

 ask patch jobArriving-xcor 58 [
 set pcolor pink
]
 ask patch jobArriving-xcor 70 [
 set pcolor pink
]
]
]

 set start-ycor 15
 if jobID > 105 [
 if jobID <= 120 [
 ;;set jobArriving-ycor start-ycor
 ask patch jobArriving-xcor jobArriving-ycor [
 set pcolor red
]

 ask patch jobArriving-xcor 22 [
 set pcolor red
]

 ask patch jobArriving-xcor 34 [
 set pcolor red
]

 ask patch jobArriving-xcor 46 [
 set pcolor red
]

 ask patch jobArriving-xcor 58 [
 set pcolor red
]
 ask patch jobArriving-xcor 70 [
 set pcolor red
]

]
]
]

 set jobArriving-ycor 24

end

to setup-Jobs-Info
 let totalNumberJob Number-of-Jobs + 1
 let selectedJobLength Job-Length-Range + 1
 let selectedJobArrivingTime Job-Arrive-Time-range + 1

 ask jobs [
 set jobID who ;; who is the turtle number assigned by the NetLogo system
 set jobLength random selectedJobLength
 if jobLength = 0 [
 set jobLength 1
]

 set arrivingTime random selectedJobArrivingTime

25

 if arrivingTime = 0 [
 set arrivingTime 1
]

 set expectedStartingTime arrivingTime

 set dispatchedTime 0
 set waitingTime 0
 set queuingTime 0
 set startingTime 0
 set finishedTime 0
 set ResponseIndex 0
 set ResponseRatio 0
 set turnaroundTime 0
 set jobServerID 1001 ;; default server for each job
 set jobDispatchStatus JOB-NOT-DISPATCHED
 set jobStatus JOB-NOT-DISPATCHED
 set lastJobStatus JOB-NOT-DISPATCHED
 print (word "setup-Jobs-Info jobID=" jobID " jobLength=" jobLength "
arrivingTime="arrivingTime)
]
end

;;
;; initialize all global variables used in simulation
;;
to init-globals

 set Number-Server-Used 8
 set Number-of-jobs 1000

 output-print "Number of Server = 8"
 output-print "Number of Job created =1000"

 set terminatingSimulation 0
 ;; System related

 set Average-serverfarm-utilization 0
 set Average-TurnaroundTime 0
 set Average-throughput 0
 set Average-WaitingTime 0
 set Average-QueuingTime 0
 set MaxWaitingTime 0
 set MaxQueuingtime 0
 set MaxWaitingJob 0
 set MaxQueuingjob 0

 set Markspan 0

 set FinalFinishedTime 1
 set TotalProcessingTime 1
 set TotalWaitingTime 1
 set TotalQueuingTime 1
 set TotalTurnaroundTime 1
 set Current-Server-ID 1001
 set ProcessingJob 1

 ;; policy related information
 set TotalJobDispatched 0
 set TotalJobFinished 0
 set TotalJobWaiting 0
 set TotalJobQueuing 0
 set TotalJobArriving 0
 set TotalJobStarting 0
 set TotalJobCreated Number-of-Jobs

 set TotalJobProcessing 0

 ;; one policy at a time

26

 set numPolicyUsed 0 ;; number of policy used in simulation
 set numPolicyDone 0 ;; number of policy done with simulation
 set numReportDone 0

 set numJobCreated Number-of-Jobs ;; number of Job created for simulation

 set Current-Server-ID 1001

 ;; Flag of POLICY
 set POLICY-SELECTED "POLICY-SELECTED"
 set POLICY-NOT-SELECTED "POLICY-NOT-SELECTED"
 set POLICY-DONE "POLICY-DONE"
 set POLICY-NOT-DONE "POLICY-NOT-DONE"

 ;; POLICY Status information
 set policy-status POLICY-NOT-DONE

 ;; POLICY Select Status information
 set FCFS-RR-policy-select-status POLICY-NOT-SELECTED
 set FCFS-SSQ-policy-select-status POLICY-NOT-SELECTED
 set SJF-RR-policy-select-status POLICY-NOT-SELECTED
 set SJF-SSQ-policy-select-status POLICY-NOT-SELECTED
 set SJF-SSQ2-policy-select-status POLICY-NOT-SELECTED

 ;; JOB State information
 set JOB-UNKNOWN "JOB-UNKNOWN"
 set JOB-READY "JOB-READY"
 set JOB-ARRIVING "JOB-ARRIVING"
 set JOB-WAITING-IN-QUEUE "JOB-WAITING-IN-QUEUE"
 set JOB-STARTING "JOB-STARTING"
 set JOB-PROCESSING "JOB-PROCESSING"
 set JOB-FINISHED "JOB-FINISHED"
 set JOB-NOT-DISPATCHED "JOB-NOT-DISPATCHED"
 set JOB-DISPATCHED "JOB-DISPATCHED"
 set JOB-DONE "JOB-DONE"

 ;; check how many policy are selected in simultion
 if First-Come-First-Served-RR [
 set numPolicyUsed 1
 ask dispatchers [
 set FCFS-RR-status POLICY-SELECTED
]
 set FCFS-RR-policy-select-status POLICY-SELECTED
 output-print "Selecting Policy: Job(First Come First Serve) and server(Round Robin)"
]

 set numPolicyUsed 0

 if First-Come-First-Served-SSQ [
 if numPolicyUsed = 1 [
 output-print "Only one policy can be selected at a time"
 output-print "Simulation was tenerated"
 output-print "Please only choose one scheduling policy"
 stop
]

 set numPolicyUsed 1
 ask dispatchers [
 set FCFS-SSQ-status POLICY-SELECTED
]
 set FCFS-SSQ-policy-select-status POLICY-SELECTED
 output-print "Selecting Policy: Job(First Come First Serve) and server(Shortest Server
Quque)"
]

 if Shortest-Job-First-RR [
 if numPolicyUsed = 1 [
 output-print "Only one policy can be selected at a time"
 output-print "Simulation was tenerated"

27

 output-print "Please only choose one scheduling policy"
 stop
]

 set numPolicyUsed 1
 ask dispatchers [
 set SJF-RR-status POLICY-SELECTED
]
 set SJF-RR-policy-select-status POLICY-SELECTED

 output-print "Selecting Policy: Job(Shorest Job First) and server(Round Robin)"
]

 if Shortest-Job-First-SSQ [
 if numPolicyUsed = 1 [
 output-print "Only one policy can be selected at a time"
 output-print "Simulation was tenerated"
 output-print "Please only choose one scheduling policy"
 stop
]

 set numPolicyUsed 1
 ask dispatchers [
 set SJF-SSQ-status POLICY-SELECTED
]

 set SJF-SSQ-policy-select-status POLICY-SELECTED
 output-print "Selecting Policy: Job(Shorest Job First) and server(Shortest Server Queue)"
]

 if Shortest-Job-First-SSQ2 [
 if numPolicyUsed = 1 [
 output-print "Only one policy can be selected at a time"
 output-print "Simulation was tenerated"
 output-print "Please only choose one scheduling policy"
 stop
]

 set numPolicyUsed 1
 ask dispatchers [
 set SJF-SSQ2-status POLICY-SELECTED
]

 set SJF-SSQ2-policy-select-status POLICY-SELECTED
 output-print "Selecting Policy: Job(Shorest Job First) and server(Shortest Server Queue)"
]

 if numPolicyUsed = 0 [
 output-print (word "You didnot select any scheduling policy. Simulation is terminated
now")
 stop
]

 set jobWaiting-xcor 0
 set jobWaiting-ycor 24
 set jobDiapatched-xcor 0
 set jobDispatched-ycor 36
 set jobQueuing-xcor 0
 set jobQueuing-ycor 36
 set jobProcessing-xcor 0
 set jobProcessing-ycor 48
 set jobFinished-xcor 0
 set jobFinished-ycor 60
 set jobArriving-xcor 0
 set jobArriving-ycor 24

end

28

;; ++
;;
;; "go" is the major control routine
;; this routine is repeated until the "stop" condition is met
;;
;; jobID who ;; who is the turtle number assigned by the NetLogo system
;; jobLength random selectedJobLength
;; arrivingTime random selectedJobLength
;; jobStatus JOB-NOT-DISPATCHED
;; ++

to go

 ;;print (word "enter GO loop ")
 print (word "totalJobFinished " totalJobFinished " Number-of-Jobs created " Number-of-Jobs)

 if totalJobFinished = Number-of-Jobs [
 print (word "GO - processing all created job ")
 print (word "Simualtion is ended")
 output-print " Simualtion is ended "
 stop
]

 Scheduling-Policy
 tick
end

;; main processing program to handle two-step policy scheduling state transition
to Scheduling-Policy
 print (word "First-Come-First-Served-RR go! tick=" ticks)

 ask jobs with [jobStatus = JOB-NOT-DISPATCHED and arrivingTime = ticks] [
 set currentJobID who
 ;;
 print (word "*****find a not-dispacted job " currentJobID " current tick= " ticks "
myJoBID " jobID " arrivingTime " arrivingTime " length " jobLength)
 if arrivingTime = ticks [;; am I ready to be scheduled
 set lastJobStatus jobStatus
 set jobStatus JOB-ARRIVING
 set TotalJobArriving TotalJobArriving + 1
 set TotalJobWaiting TotalJobWaiting + 1
 print (word "change jobID=" who "from JOB-NOT-DISPATCHED status to JOB-ARRIVING")
 ask server jobServerID [
 set numberJobAssigned numberJobAssigned + 1
]

 set jobArriving-xcor who
 let localRange random 10
 let local-ycor jobArriving-ycor + localRange

 ask patch jobArriving-xcor local-ycor [
 set pcolor red
]

]
]

 ;; if there is arriving job ready to be dispatched here
 ;; if FCFS-RR policy is used
 if First-Come-First-Served-RR [
 print(word "FCFS-RR-POLICY")
 ask jobs with [jobStatus = JOB-ARRIVING] [
 set currentJobID who
 print (word "find an arriving job " currentJobID " current tick= " ticks " myJoBID
" jobID " arrivingTime " arrivingTime " length " jobLength)
 policy-processing
]
]

29

 ;; if FCFS-SSQ policy is used
 if First-Come-First-Served-SSQ [
 print(word "FCFS-SSQ-POLICY")
 ask jobs with [jobStatus = JOB-ARRIVING] [
 set currentJobID who
 print (word "find an arriving job " currentJobID " current tick= " ticks " myJoBID
" jobID " arrivingTime " arrivingTime " length " jobLength)
 policy-processing
]
]

 ;; if SJF-RR policy is used
 if Shortest-Job-First-RR [
 print(word "SJF-RR-POLICY")
 ;; select a job with shortest job length
 ask jobs with[jobStatus = JOB-ARRIVING] [
 set currentJobID who
 print (word "SJF-RR find a shortest job + JOB-ARRIVING status SJF-RR-JOBID="
currentJobId " tick=" ticks " call policy-processing")
 policy-processing

]
]

 ;; if SJF-SSQ policy is used
 if Shortest-Job-First-SSQ [
 print(word "SJF-SSQ-POLICY")
 ask jobs with [jobStatus = JOB-ARRIVING] [
 set currentJobID who
 print(word "SJF-SSQ-POLICY myJobID " currentJobID " JOB-ARRIVING JobLength "
jobLength)
 print (word "SJF-SSQ: find a shortest job + JOB-ARRIVING status SJF-RR-JOBID="
currentJobId " tick=" ticks " call policy-processing")
 policy-processing

]
]

 ;; if SJF-SSQ policy is used
 if Shortest-Job-First-SSQ2 [
 print(word "SJF-SSQ2-POLICY")
 ask jobs with [jobStatus = JOB-ARRIVING] [
 set currentJobID who
 print(word "SJF-SSQ2-POLICY myJobID " currentJobID " JOB-ARRIVING JobLength "
jobLength)
 print (word "SJF-SSQ2: find a shortest job + JOB-ARRIVING status SJF-SSQ-JOBID="
currentJobId " tick=" ticks " call policy-processing")
 policy-processing

]
]

 print (word "Checkpoint 0001 ")

 let jobCurrentLength 0
 ask jobs with [jobStatus = JOB-DISPATCHED] [
 print (word "Checkpoint 0002");
 set jobCurrentLength jobLength
 ;; inside jobs turtle contend
 ;; update job current status
 set currentJobID who
 print (word "This job=" who " was dispatched")
 print (word "This job=" who " tick=" ticks " startingTime=" startingTime "
finishedTime=" finishedTime)
 if startingTime > ticks [

30

 set lastJobStatus jobStatus
 set jobStatus JOB-WAITING-IN-QUEUE
 ask server assignedServerID [
 set numberJobInQueue numberJobInQueue + 1
 set ServerWorkloadQueuing ServerWorkloadQueuing + jobCurrentLength
 print (word "Server " jobServerID " increasing numberJobInQueue to "
numberJobInQueue)
]

 set jobQueuing-xcor (assignedServerID - 1001) * 16 + random 16
 print (word "HHHHHHHHHHHHHHHHHHHHH queuing xcor " jobQueuing-xcor " ycor "
jobQueuing-ycor)
 let localRange random 10

 let local-ycor jobQueuing-ycor + localRange
 ask patch jobQueuing-xcor local-ycor [
 set pcolor white
]

]

 ;; it is time to start processing this job
 if startingTime = ticks [
 set queuingTime ticks - dispatchedTime
 print (word "this job=" who " tick=" ticks " startingTime=" startingTime)
 print (word "this job=" who " tick=" ticks " finishedTime=" finishedTime)

 set lastJobStatus jobStatus
 set jobStatus JOB-PROCESSING
 set ProcessingJob ProcessingJob + 1
 set TotalJobProcessing TotalJobProcessing + 1

 set jobProcessing-xcor (assignedServerID - 1001) * 16 + random 16
 let localRange random 10
 let local-ycor jobProcessing-ycor + localRange
 ask patch jobProcessing-xcor local-ycor [
 set pcolor yellow
]

 if lastJobStatus = JOB-WAITING-IN-QUEUE [
 ask server jobServerID [
 set ServerWorkloadQueuing ServerWorkloadQueuing - jobCurrentLength
 set numberJobInQueue numberJobInQueue - 1
]
]

 ;; update server job processing information
 ask Server assignedServerID [
 set numberJobProcessed numberJobProcessed + 1
]
]
]

 ask jobs with [jobStatus = JOB-WAITING-IN-QUEUE] [
 set jobCurrentLength jobLength
 if startingTime = ticks [
 print (word "this job=" who " tick=" ticks " startingTime=" startingTime)
 set lastJobStatus jobStatus
 set jobStatus JOB-PROCESSING
 let localRange random 10
 set jobProcessing-xcor (assignedServerID - 1001) * 16 + random 16
 let local-ycor jobProcessing-ycor + localRange

 ask patch jobProcessing-xcor local-ycor [
 set pcolor yellow
]

 ask server assignedServerID [
 set ServerWorkloadQueuing ServerWorkloadQueuing - jobCurrentLength

31

 set numberJobInQueue numberJobInQueue - 1
 set numberJobProcessed numberJobProcessed + 1
]

 set ProcessingJob ProcessingJob + 1
 set TotalJobProcessing TotalJobProcessing + 1

]
]

 ask jobs with [jobStatus = JOB-PROCESSING] [
 let next-local-tick ticks + 1
 ;;if FCFS-RR-finishedTime = next-local-tick [
 if finishedTime = ticks [
 print (word "this job=" who " tick=" ticks " FCFS-RR-startingTime=" startingTime)
 print (word "this job=" who " tick=" ticks " FCFS-RR-finishedTime=" finishedTime)
 set lastJobStatus jobStatus
 set jobStatus JOB-FINISHED

 let localRange random 10
 set jobFinished-xcor (assignedServerID - 1001) * 16 + random 16

 let local-ycor jobFinished-ycor + localRange
 ask patch jobFinished-xcor local-ycor [
 set pcolor green
]

 set ProcessingJob ProcessingJob - 1
 ask Server assignedServerID [
 set numberJobProcessed numberJobProcessed - 1
 set numberJobFinished numberJobFinished + 1
]

 print (word "this job=" who " was JOB-FINISHED")
 set totalJobFinished totalJobFinished + 1
]
]

 ask jobs with [jobStatus = JOB-FINISHED] [
 set finishedTime startingTime + jobLength
 set turnaroundTime finishedTime - arrivingTime
 set lastJobStatus jobStatus
 set jobStatus JOB-DONE
 set finalFinishedTime finishedTime
 set responseIndex turnaroundTime - jobLength
 set responseRatio jobLength / turnaroundTime

 let localResponseIndex responseIndex

 ask server assignedServerID [
 set Server-ResponseIndex Server-ResponseIndex + localResponseIndex
]

 if totalJobFinished = totalJobCreated [
 print (word "all created jobs are finished processing ")
 set policy-status POLICY-DONE
]
]

 update-policy-Status
 update-Performance-Chart-Data

end

to RR-get-nextServerID

 set selectedServer Current-Server-ID
 set Current-Server-ID Current-Server-ID + 1

32

 if Current-Server-ID = 1009 [
 set Current-Server-ID 1001
]
end

;;
;; Policy processing routines
;;
to policy-processing

 let jobStartingTime 99999
 let jobCurrentStatus 0
 let jobCurrentLength 0
 print (word "policy-processing currentJobID " currentJobID);
 print (word "Checkpoint 0003");

 if First-Come-First-Served-RR [
 print(word "FCFS-RR-POLICY: call RR-get-nextServerID")
 RR-get-nextServerID ;; get my server ID
 print (word "selectedServer " selectedServer)
]

 ;; if FCFS-SSQ policy is used
 if First-Come-First-Served-SSQ [
 find-shortest-server-queue-server
 print(word "call FCFS-SSQ-POLICY: call find-shortest-server-queue-server selectedServer"
selectedServer)
]

 ;; if SJF-RR policy is used
 if Shortest-Job-First-RR [
 print(word "SJF-RR-POLICY: call RR-get-nextServerID")
 RR-get-nextServerID ;; get my server ID
]

 ;; if SJF-SSQ policy is used
 if Shortest-Job-First-SSQ [
 find-shortest-server-queue-server
 print(word "SJF-SSQ-POLICY: call find-shortest-server-queue-server selectedServer "
selectedServer)
]

 ;; if SJF-SSQ policy is used
 if Shortest-Job-First-SSQ2 [
 find-shortest-server-queue-server2
 print(word "SJF-SSQ-POLICY: call find-shortest-server-queue-server selectedServer "
selectedServer)
]

 ask job currentJobID [
 set jobCurrentLength jobLength
 let localJobStatus jobStatus
 let myServerID assignedServerID

 ask Server selectedServer [
 ;; decide the job starting time

 if nextStartingTime > ticks [
 print (word "process-policy: nextStartingTime=" nextStartingTime "> ticks= " ticks
" put job in Queue")
 ;; this job cannot not start now, put it in waiting queue

 ask job currentJobID [
 set lastJobStatus localJobStatus
 set jobStatus JOB-WAITING-IN-QUEUE
]
 let localRange random 10
 set jobQueuing-xcor (selectedServer - 1001) * 16 + random 16

33

 let local-ycor jobQueuing-ycor + localRange

 ask patch jobQueuing-xcor local-ycor [
 set pcolor white
]

 set jobStartingTime nextStartingTime
 set nextStartingTime nextStartingTime + jobCurrentLength
 set numberJobInQueue numberJobInQueue + 1
 set ServerWorkloadQueuing ServerWorkloadQueuing + jobCurrentLength
 set numberJobAssigned numberJobAssigned + 1
]

 if nextStartingTime <= ticks [
 print (word "process-policy: nextStartingTime <= ticks, start this job right NOW")
 set jobStartingTime ticks
 set nextStartingTime ticks + jobCurrentLength

 ask job currentJobID [
 set lastJobStatus localJobStatus
 set jobStatus JOB-PROCESSING
]

 let localRange random 10
 set jobProcessing-xcor (myServerID - 1001) * 16 + random 16

 let local-ycor jobProcessing-ycor + localRange

 ask patch jobProcessing-xcor local-ycor [
 set pcolor yellow
]

 set totalProcessingTime totalProcessingTime + jobCurrentLength
 set numberJobProcessed numberJobProcessed + 1
 set ProcessingJob ProcessingJob + 1
 set TotalJobProcessing TotalJobProcessing + 1
]

 set numberJobAssigned numberJobAssigned + 1
 print (word "process-FCFS-RR-policy: current server=" selectedServer)
] ;; inside the Server context

 ;; decide the job starting time
 set assignedServerID selectedServer
 set jobServerID selectedServer
 set startingTime jobStartingTime
 set waitingTime startingTime - arrivingTime
 set finishedTime startingTime + jobLength
 set turnaroundTime finishedTime - arrivingTime
 print (word "job=" who " dispatch-status is now JOB-DISPATCHED");
 set totalJobDispatched totalJobDispatched + 1
]

end

to update-policy-Status

 let myJobID 0
 ask jobs [
 ask job who [
 set waitingTime dispatchedTime - arrivingTime
 set finishedTime startingTime + jobLength
 set turnaroundTime finishedTime - arrivingTime
 set queuingTime startingTime - dispatchedTime
]

34

]

 ;; get the final finished time
 print (word "Final finished Time = " finalFinishedTime)

 set totalProcessingTime sum [jobLength] of jobs
 set totalWaitingTime sum [waitingTime] of jobs
 set totalQueuingTime sum [queuingTime] of jobs
 set totalTurnaroundTime sum [turnaroundTime] of jobs

 if totalJobFinished > 0 [
 set Average-WaitingTime totalWaitingTime / totalJobFinished
 set Average-QueuingTime totalqueuingTime / totaljobFinished
 set Average-TurnaroundTime totalTurnaroundTime / totaljobFinished
 set Average-ProcessingTime totalProcessingTime / totaljobFinished
]

 if finalFinishedTime >= 1 [
 set Average-throughput totalJobFinished / finalFinishedTime
]

 if totalJobFinished >= 1 [
 set Average-TurnaroundTime totalTurnaroundTime / totalJobFinished
 set Average-WaitingTime totalWaitingTime / totalJobFinished
]

 set markspan finalFinishedTime

end

to update-Final-policy-Status

 let totalFinalProcessingTime totalProcessingTime
 let totalMarkspan markspan * numServerUsed
 let Laverage-serverfarm-utilization 0.0

 set Total-Server-Queuing-Job sum [numberJobInQueue] of ServerFarm
 set Total-Server-Queuing-Time sum [serverWorkloadQueuing] of ServerFarm

 set Average-QueuingTime Total-Server-Queuing-Time / 8
 set Average-QueuingJob Total-Server-Queuing-Job / 8

 set Average-TurnaroundTime sum [turnaroundTime] of jobs / TotalJobFinished
 set Average-Throughput TotalJobFinished / ticks

 output-print "Average Job Size"
 output-print Average-ProcessingTime
 output-print "Average-TurnaroundTime "
 output-print Average-TurnaroundTime
 output-print "Average-Throughput "
 output-print Average-Throughput

 set Laverage-serverfarm-utilization totalFinalProcessingTime / totalMarkspan
 set average-serverfarm-utilization Laverage-serverfarm-utilization

 output-print "average-serverfarm-utilization"
 output-print average-serverfarm-utilization

 output-print "MARKSPAN "
 output-print markspan

end

35

to update-Performance-Chart-Data

 set totalProcessingTime 0
 set totalWaitingTime 0
 set totalQueuingTime 0
 set totalTurnaroundTime 0

 set totalProcessingTime sum [jobLength] of jobs with [jobStatus = JOB-FINISHED]
 set totalQueuingTime sum [queuingTime] of jobs with [jobStatus = JOB-WAITING-IN-QUEUE]
 set totalTurnaroundTime sum [turnaroundTime] of jobs

 set Total-Server-Queuing-Job sum [numberJobInQueue] of ServerFarm
 set Total-Server-Queuing-Time sum [serverWorkloadQueuing] of ServerFarm

 set Average-QueuingTime Total-Server-Queuing-Time / 8
 set Average-QueuingJob Total-Server-Queuing-Job / 8

 if TotalJobFinished > 0 [
 set Average-TurnaroundTime sum [turnaroundTime] of jobs / TotalJobFinished
 set Average-Throughput TotalJobFinished / ticks
]

 if finalFinishedTime >= 1 [
 set average-throughput totalJobFinished / finalFinishedTime
]

 ;;set numberJobInQueue

 let counter 0
 ask jobs with [jobStatus = JOB-WAITING-IN-QUEUE] [
 set counter counter + 1
]

 set totalJobQueuing counter

 set markspan finalFinishedTime

 set-current-plot "Arriving-vs-Finished"
 set-server-plot-data
 ;;clear-plot
 set-current-plot "Server-NumberJobInQueue"
 set-current-plot "Server-QueuingJobLength"

 ask serverFarm [
 print (word who "--" ServerWorkloadQueuing "--" numberJobInQueue)
]

end

to set-server-plot-data

 ask server 1001 [
 set Server121-QueueLength ServerWorkloadQueuing
 set Server121-NumJobInQueue numberJobInQueue
 set Server121-xcor 8
 ;set Server121-Queue-Length Random 100
 ;set Server121-NumJobInQueue Random 100
 ;set Server121-xcor 8

]

 ask server 1002 [
 set Server122-QueueLength ServerWorkloadQueuing
 set Server122-NumJobInQueue numberJobInQueue

36

 set Server122-xcor 16
]

 ask server 1003 [
 set Server123-QueueLength ServerWorkloadQueuing
 set Server123-NumJobInQueue numberJobInQueue
 set Server123-xcor 24
]
 ask server 1004 [
 set Server124-QueueLength ServerWorkloadQueuing
 set Server124-NumJobInQueue numberJobInQueue
 set Server124-xcor 32
]
 ask server 1005 [
 set Server125-QueueLength ServerWorkloadQueuing
 set Server125-NumJobInQueue numberJobInQueue
 set Server125-xcor 40
]
 ask server 1006 [
 set Server126-QueueLength ServerWorkloadQueuing
 set Server126-NumJobInQueue numberJobInQueue
 set Server126-xcor 48
]
 ask server 1007 [
 set Server127-QueueLength ServerWorkloadQueuing
 set Server127-NumJobInQueue numberJobInQueue
 set Server127-xcor 56
]
 ask server 1008 [
 set Server128-QueueLength ServerWorkloadQueuing
 set Server128-NumJobInQueue numberJobInQueue
 set Server128-xcor 64
]

end

;; Select a sever with the shortest queue length
;;
to find-shortest-server-queue-server
 let selectedServerID 1001
 let localServerQueueLength 0

 ask ServerFarm with-min [numberJobInQueue]
 [
 set selectedServerID who

]

 ask server selectedServerID [
 set localServerQueueLength numberJobInQueue
]

 set selected-Server selectedServerID
 print (word "FCFS-SSQ select serverID=" selected-Server " queueLength=" localServerQueueLength)
 set Current-Server-ID selected-Server
 set selectedServer selected-Server
 ;;
end

;; Select a sever with the shortest queue length
;;
to find-shortest-server-queue-server2
 let selectedServerID 1001
 let localServerWorkloadQueue 0

 ask ServerFarm with-min [ServerWorkloadQueuing]
 [

37

 set selectedServerID who

]

 ask server selectedServerID [
 set localServerWorkloadQueue ServerWorkloadQueuing
]

 set selected-Server selectedServerID
 print (word "FCFS-SSQ select serverID=" selected-Server " queueTime=" localServerWorkloadQueue)
 set Current-Server-ID selected-Server
 set selectedServer selected-Server
 ;;
end

