

 New Mexico

Supercomputing Challenge

Final Report

March 19, 2015

1019

Deming High School

Team Members:

Ray Stubbs

Teacher:

Sandra Almanza

Project Mentor:

None

Proposal

As a project for the supercomputing challenge I will make a gravity modeling environment. The

program will allow its user to create astronomical bodies with a specified mass and initial velocity. When

the model is run all created bodies will be attracted to each other, and move toward each other at

speeds determined by the objects' masses and distances from each other.

I will write the program in Java and use Newton's Law of Universal Gravitation to model the gravity

between bodies. I will use Kepler's Laws to test whether my model is accurate. The purpose of my

project is to simulate the effects of gravity on astronomical bodies. I hope to use this model to research

what would happen to the orbit of the Earth if Mercury, the smallest planet and the one closest to the

Sun, was consumed by that Sun. Would Earth still be habitable? This is the question I plan on

answering.

Executive Summary

In my research I attempt to discover the changes that would occur in our Solar System if

Mercury was consumed by the Sun. I predict that the orbits of all the other planets will be shifted

slightly inward. This would not be good for humans, since right now the Earth exists at the perfect

distance from the Sun to support our life. If the Earth’s orbit is shifted too far in toward the Sun, or too

far away from the Sun, then human kind and all other life on Earth, could perish.

Report
Our universe is an amazing phenomenon, the rules that govern it so perfect. One of these rules

that has perhaps one of the greatest effects on the universe, and causes the most change in it is the law

of gravity. This law is the law that causes the attraction of masses in the universe. It is the law that

holds the planets together, fuels the stars, creates and maintains Solar Systems, and keeps galaxies from

falling apart. The law of gravity is the reason that we, as humans, and everything else in our lives can

exist. This law is very stable, and has kept our world alive for billions of years; however gravity is also

unforgiving and must follow its own law.

Earth exists in a small region of the Solar System that can support liquid water and thus support life,

called the Circumstellar Habitable Zone. According to Wikipedia the habitable zone in our Solar System

ranges from about 0.725 to 3.0 AU, this gives us a pretty small tolerance.

In my experiment I study the changes that would occur in the Earth’s orbit if the Sun consumed

Mercury. To clarify, by consume I mean to pull it in and absorb its mass. I study these changes and

attempt to answer the simple question: Would mankind survive?

Tools
I chose to conduct my investigation with GravSim, a gravitational modeling environment that I

wrote in Java. Though still in development GravSim allows for the gravitational simulation of an

indefinite number of astronomical bodies in 2D, vacuum space. The simulation considers the mass of

each object, and their proximity with each other when calculating their motions. The environment

supports adjustable step sizes, this allows the user to trade simulation speed for greater accuracy, so in

theory, with a small enough step size simulations can produce near-perfect results, however this could

take an impractical amount of time, so I’ll use less accurate, faster simulation settings for my

investigation. Because this tool is based upon a 2D universe and the step sizes are kept fairly large, the

predictions are purely theoretical and may not be extremely accurate.

I verified the validity of my model by setting up a simulation of the Earth’s orbit around the Sun.

The simulation satisfied all of Kepler’s Laws; the orbit of the Earth is an ellipse, with the Sun at one of

the foci, the arc area formed by the Earth’s sweeping across space is equal during an equal period of

time independent of the phase of the orbit, and the ratio between the square of the orbit period over

the cube of the distance between the Earth and Sun satisfy the T2/R3 = ~1 of Kepler’s Third Law. Also the

Earth maintains a semi-constant orbital distance that matches that of the real Earth, and the orbital

period is ~365 days, which is the length of one real year.

Method
My experiment is rather simple, first I setup a simulation of the Earth’s orbit under normal

conditions, with the Sun and Earth at their proper masses. I setup GravSim to log the X coordinate of

the Earth each time its Y coordinate changes polarity, that is, it logs the Earth’s distance from the Sun at

aphelion (max orbit distance) and perihelion (min orbit distance). Next I setup a similar simulation; only

in this one the Sun has the combined mass of itself and Mercury. After running each simulation for a

time, I analyze the log data and see if the orbit of the second simulation was smaller than that of the

first and if so then by how much. If the smallest orbit distance (perihelion) is still higher than the

minimum habitable orbit distance (0.7E6 km from the Sun), then mankind will survive this devastating

disaster, otherwise we are doomed.

Initial Setup for Simulation 1 (Normal Masses)

 Mass (Kg) X (Km) Y (Km) Initial Velocity (Km/s) Angle (π*rad)

Sun 1.989E30 0 0 0 0

Earth 5.9722E24 152E6 0 29.29 0.5

Note: I set the initial X coordinate of Earth at the maximum distance from the Sun that its orbit ever reaches, and

its initial velocity to the minimum velocity that the Earth ever travels at. This is because the Earth travels slowest
when it is farthest from the Sun since gravity generates less force from a distance.

Initial Setup for Simulation 2 (Sun Mass = Sun + Mercury)

 Mass (Kg) X (Km) Y (Km) Initial Velocity (Km/s) Angle (π*rad)

Sun 1.989003301E30 0 0 0 0

Earth 5.9722E24 152E6 0 29.29 0.5

Initial setup for the simulations, note that the radius’ are scaled to make them visible; at the current zoom state

neither the Sun nor the Earth would be visible with their appropriate radius’.

Simulation Data
This is the log data generated by GravSim.

Simulation Data
Simulation 1 Simulation 2

Perihelion Aphelion Perihelion Aphelion

146729357.860304 151999998.669940 146729310.001625 151999998.637151
146729356.762856 151999997.320881 146729308.898725 151999997.248172
146729355.646007 151999995.952490 146729307.768735 151999995.832655
146729354.509389 151999994.564415 146729306.611206 151999994.390202
146729353.352631 151999993.156304 146729305.425705 151999992.920385
146729352.175348 151999991.727818 146729304.211795 151999991.422805
146729350.977174 151999992.556574 146729302.969041 151999992.584345
146729349.757728 151999991.419873 146729301.696987 151999991.422080
146729348.516631 151999990.263776 146729300.395183 151999990.232836
146729347.253497 151999989.087929 146729299.063171 151999989.016197
146729345.967944 151999987.891963 146729297.700518 151999987.771753
146729344.659574 151999986.675516 146729296.306760 151999986.499066
146729343.328012 151999985.438228 146729294.881436 151999984.522735
146729334.292200 151999983.090458 146729293.424094 151999983.596637
146729332.540717 151999982.158298 146729291.934260 151999982.643052
146729330.762648 151999981.206228 146729290.411478 151999981.661552
146729328.957602 151999980.233879 146729288.855276 151999980.651697
146729327.125166 151999979.240879 146729287.265187 151999979.613058
146729325.264955 151999978.226847 146729285.640739 151999974.581543
146729323.376550 151999972.474880 146729272.810256 151999973.900614
146729321.459531 151999971.777825 146729270.667419 151999973.191612
146729319.513490 151999971.060628 146729268.486600 151999972.454096

Note: The perihelion and aphelion lose a Km of distance with each orbit, this is a consequence of using large step

sizes, the results are less accurate. Luckily the inaccuracy in these simulations follow somewhat of a pattern, losing

one Km on each orbit, so to patch up the data I add 22 Km (one for each sample) to each of the data sums before

calculating the average.

Discussion

The conclusion of the experiment is based on the average values of the perihelion and aphelion

of Simulation 1 and Simulation 2. In the calculations I add 22 to the sums of the data values to make

up for the inaccuracy mentioned in the above note.

Average Values

Simulation Type Calculation Value

1

Perihelion
 ∑

146729342.09363

Aphelion
 ∑

151999987.0998

2

Perihelion
 ∑

146729293.7921

Aphelion
 ∑

151999987.12701

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Simulation Data Line Chart

Simulation 2 Aphelion

Simulation 2 Perihelion

Simulation 1 Aphelion

Simulation 1 Perihelion

As can be seen in the results, the aphelions for the two simulations are almost exactly the same, and the

perihelions are also pretty close. And the perihelion of Simulation 2 does not even come close to

dropping below the 700,000 habitable zone limit.

Conclusion
In conclusion, we have no reason to fear being pulled out of our habitable zone, if the Sun

consumes Mercury and absorbs its mass, the orbit of our Earth would hardly change at all; at most the

average temperature of the Earth might rise a little due to the small change (about 48.30153 Km) in the

orbit size. Of course this simulation only considers gravity though, so there is always the chance that

we’ll be exterminated by the heat blast that’ll occur when Mercury is consumed, but that consideration

was not part of my experiment.

Personal Statement
My most significant accomplishment in this project was how much I learned. I’ve never worked

much with Java graphics so this project gave me a chance to experiment with them, and I had to figure

out how to get everything in the program to work with the graphics, which proved to be quite a task. I

also began working in a new programming language, Go, to speed up the model; however there is no Go

code in the final product due to the language’s lack of GUI support. GravSim, the modeling

environment, itself is what I am proud of; not so much the investigation since I think that could have

gone much better. I’m proud of the program because it worked exactly as I’d foreseen which does not

always happen with my programs.

Acknowledgements
I’d like to acknowledge my coach Ms. Almanza for all the time and effort she put into this

program, the NetBeans development team for developing a great Java development environment which

I used to develop GravSim, Wikipedia for providing me with great research leads and numbers, and for

the Supercomputing Challenge Staff and volunteers for all the hard work they put into the program and

for making the program itself possible. Thank you all very much.

