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1 Executive Summary

Increasingly, news of climate change and global warming have dominated scholarship and media

outlets. Exposure to such topics has warned the public of man-made harm to the environment,

like air pollution and greenhouse gas emissions, yet one sector of anthropogenic pollution, light

pollution is often overlooked. Awareness around this topic stems from education, policy and research.

This issue which intersects ecological and social variables, is thus best studied under a systems

approach, in which robust interdisciplinary perspectives are considered and analogously will warrant

response from those in many fields. Contemporary studies of systems approaches frequently use

agent-based models (ABM’s) and techniques from network analysis. My project aims to pull from

ideas in topology, ecology, and policy analysis to modify and strengthen light pollution policy in the

contiguous United States.

2 Introduction

Systems theory, which describes the behavior and interactions of agents within a system, pulls from

virtually all fields of academia. Coined by Australian biologist Ludwig von Beffalny, systems theory

, “should be an important regulative device in science, to guard against superficial analogies that are

useless in science and harmful in their practical consequences.” It is the scientific movement against

the advent of scientific reductionism and the call to view phenomena more holistically. Systems
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theory argues, as the Greek philosopher Aristotle puts, “The whole is greater than the sum of its

parts”. Under the field of general systems theory is a set of systems known as Complex Systems

of Complex Adaptive Systems. Complexity, which within scholarship has become ambiguous, refers

to a system which is composed of multiple and interconnected parts and looks to prediction instead

of explanation. Complex systems are often difficult to describe and look to analytic techniques

to understand them holistically. I defined light pollution as a complex system, as it is a problem

of the intersection of ecological and social dynamics. Complex systems are ultimately identified

by 4 characteristics, first, they exhibit self-organizing behavior, or organization ultimately emerges

from complexity, second, they are non-linear, in other words a change to one component will have

an effect on the system on a varying scale, huge, small or even none at all. Finally, they have a

chaotic dynamic that ultimately becomes more ordered with time, and finally they show emergent

behavior, or the collective and often unexpected behavior demonstrated by the mix of interacting

components within a system. Emergence also figures its way into self-organization, in a bottom-up

manner, where complexity emerges at the initiation of a system and gradually grows into nonlinear

interactions between components or agents of a system, from here as a system grows increasingly

complex, order surfaces. Some systems, and specifically the systems problem of Light Pollution are

also adaptive, which means they change with perturbations, or disruption to the system to maintain

an invariant or unchanging state, which in the case of light pollution would be the propagation

of artificial light, by altering behaviors or structures, collectively known as properties within the

system. Such properties of light would be its, duration, scattering, intensity and spectrum.

3 Background

3.1 ALAN

Artificial light at night or what I will consistently refer to by its acronym, ALAN, is the leading

driver of light pollution and a component of a my system that describes light pollution. ALAN,

plays a significant role in light pollution: as Dark Sky international reports, “Skyglow fouls the night

sky for more than 80% of all people and more than 99% of the U.S. and European populations.” Or

as the authors on a recent study of light pollution summarize, “With an estimated annual average
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increase of 9.6% (estimated based on citizen science data), light pollution is one of the most pressing

drivers of current global change, and it has become increasingly clear that the loss of the night

has serious psychological, health, socio-economic and ecological consequences.” ALAN is a form of

“anthropogenic pollution”, or pollution powered by human activity, that often disrupts the biological

rhythms and in a systems view, the entire ecosystem. Humans, coincidentally are the prey of their

own creation, as ALAN has detrimental effects on humans such as messing with circadian rhythms

and sleep patterns.

Figure 1: ALAN

3.2 Emergence and the Behaviors of ABM Ecological Systems

Emergent behavior is the emergence of order from complexity within a system and ultimately gives

us insight into the dynamics of a system. Emergent behavior comes in many forms and is separated

into two categories, strong emergence and weak emergence. Strong emergence, which came out of

the movement of British emergentism in the 1920s and refers to a more philosophical understanding

of emergence, that is not deducible. Weak emergence on the other hand, is the rise of high-level

phenomenon from low-level domain that is deducible. It is thus this weak emergence phenomena

that I am looking for. Weak-emergence often appears in the form of patterns, an example of which is

in Conway’s game of life, where particular patterns like the toad and glider emerge from the chaotic

dynamics of Conway’s game.
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Figure 2: Conway’s game of life emergent behaviors

My process of extrapolating these patterns and emergent behavior is similar in that it looks at

patterns within the network representation of my model, by first analyzing the dynamics of the

model. The underlying techniques are degree centrality, or the number of unique relationships or

links a node has, betweenness centrality, or the measure of influence nodes have within a network,

closeness, how connected a node is, eigenvector centrality, the discovery of central nodes, clustering

tests, to cluster nodes into patterns, centrality tests, which once again identify central nodes, degree

distribution or the number of connections per node, tests, modularity tests, or how well a network

can be partitioned into modules, community detection algorithms, or the clustering of groups within

the network and finally the number of connected components within a network.

3.3 Network Theory

Yet these metrics are virtually meaningless without proper introduction to the topological structures

and properties of networks that make them so helpful in analyzing the emergent behavior of a
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system. Specifically, my model represents a socio-ecological network, or the connection of social(man-

made) variables like light, and the ecological agents of the Orb-Web Spider ecosystem. Network

Theory, which translates agents as nodes and interactions between agents as edges is advantageous

because of its rich topological structure, from which patterns like modules, communities etc. reveal

underlying behaviors and properties of a system. In the biological realm, Network Theory has seen

growing applications in molecular biology as well as macro-scale ecological systems(in tandem with

anthropogenic variables), like the one I sought to analyze. Ecological networks often characterize

interactions between nodes as trophic or symbiotic, either a classical predator-prey relationship or

coexistence respectively.

4 Model

In the vein of my systems approach, I created a system, an ecosystem in this case, resembling the

real-life interactions between flora and fauna and this looming agent of light or ALAN. Now as I’ve

highlighted before, because of both time constraints and processing power it was important to choose

a system that illuminated the complexity of light pollution systems, whilst maintaining something

feasible to model. Ok, so I’ve coined my model the “Orb-Web spider ecosystem” and it works like

this: orb-web spiders, their insect prey, the prey’s diet of grasses and finally lights are the agents

within my model. Now, as recent studies have found, orb-web spiders are negatively impacted by

the influx of night lighting, as they typically reside in the backyards, fences, walls and gardens that

can support their intricate web designs. This intersection of ecosystem dynamics, emblematic in the

orb-weaver spiders’ natural lifestyle and social dynamics, the urban neighborhoods it often inhabits

intrigued me as it would offer a level of complexity that paralleled the light pollution problem.

Now as for the interactions between these agents, I limited them to growth and fecundity rates

estimated for the spiders and their insect prey and the growth rate of the grasses, coupled with the

basic food web dynamics of the system, or that the spiders eat the prey and the prey the grasses.

With the addition of light, which were 18 in number given the average distribution of lights for an

urban neighborhood, I added disruptor functions that changed the growth, fecundity among other

properties of the insects and prey once within a certain diameter of the light. I visualized this model

6



in a python library known as Mesa which is used for agent-based modeling and got the following

results.

4.1 Agents

Pictured below is a snippet of the code in which I defined classes of spiders, insects, grasses and

lights with their given properties and interactions between one another in a 2-d environment, much

like the one in the late James Conway’s game of life. In the code snippet, I define solely the spider

agent.

1 class Spider(Agent):

2 def __init__(self , unique_id , model , age , fecundity , growth):

3 super().__init__(unique_id , model)

4 self.age = age

5 self.satiation = 100

6 self.fecundity = fecundity

7 # self.grid = mesa.space.MultiGrid(width , height , True)

8 self.growth_rate = growth

In the visualization, populations of lights, spiders, prey and grasses fluctuate. Dark green agents are

spiders, yellow agents are of course lights, lime green agents are grasses and finally blue agents are

the insect prey.

Figure 3: Spider-Insect population graph outputted by Mesa
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Figure 4: The Mesa Model GUI

Yet, to truly capture the properties and their relation to real-world phenomena, the aforemen-

tioned network theory held the answer. So how do we translate the Orb-web spider system into a

network? The process is underscored by the topology of a network. Networks or graphs are defined

as a set of nodes or vertices as they label them in this picture, connected by lines or edges. In a more

holistic sense, the objects or agents within a system are nodes, and the links or the information that

connects these nodes together are visualized as these links or edges. Now by exploring the topology

of networks, we can uncover the underlying behaviors and properties of a system, so accordingly I

translated my agent-based model into a network, in which the agents, like the spiders, grasses, lights

and prey were the nodes and the edges were the interactions between them in their socio-ecological

environment. I used the python library networkx to render this translation and ouputted a figure

like the following, with randomly assigned values for parameters:
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Figure 5: Network visualization of the ABM model

4.2 Verification

The verification of this model lies in observed interactions of spiders, light, insects and grasses

across a multitude of sources and empirical data collected by researchers. However in the future I

hope to create a more robust method of calibration and validation for my model. Yet, ultimately I

was content in my decision to direct my focus towards the analysis of the model. After all, agent

based models simply aren’t capable of perfectly matching empirical data at the micro-level but

rather responding to certain variables within that system most important to the modeller. Thus I

employed face validation to verify my model against the conceptual ’Orb-Weaving Spider Ecosystem’.

In tandem with face validation, however, there was one metric I used to test for statistical significance

of the outputted data from my agent based models, or p-values of greater than 0.05. For my data I

received the value of 0.0015689 which is less than 0.05 using the available functions under the SciPy

library.

5 Methods and Results

In our given network, 4 parameters of the light agent/node are changed. These parameters are

shown in table 1.
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Table 1: Parameters

Parameter Description

Spectrum Spectral composition of light
Duration The length of illumination peri-

ods during the nighttime
Intensity How much light is there in lux/-

candela?
Scattering Reflected through aerosols and is

‘scattered’ throughout the sky

These parameters are defined by the following characteristics. Spectrum is an adjustable pa-

rameter, with a range of 320 nm to 1100 nm , since halogen lights which are typically used in city

lighting are in this spectral range. Duration is simply a time spectrum parameter, where time (sec)

is also adjustable. Intensity is another adjustable parameter that takes lux of light as an argument.

Finally scattering is an adjustable parameter that gives the options of Rayleigh and Mie scattering.

It occurs when the diameter of a particle interacting with photons is less than 50nm, or (where P

is particle diameter) P < 1
10λ. Mie scattering on the other hand occurs when interacting particles

have diameters that occupy the range between 50-500nm, or follow: 1
10λ ≤ P ≤ λ. Mie scattering

of photons becomes more directional and is scattered forward, additionally, less light is scattered to

the sides. Mie Scattering is described by the following equations: Qs is proportional to:

x = (
r

λ
)4 (1)

Qs =
σs

πr2
(2)

Rayleigh scattering on the other hand follows the following equations:

Figure 6: Rayleigh Scattering
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Where λ is wavelength and Qs is proportional to

(
r

λ
)4

. Rayleigh scattering of photons on the other hand follows a peanut shaped distribution. The

distributions of both are shown below:

Figure 7: Rayleigh v Mie Scattering

Unfortunately however, at this time, the adjustable parameter of Mie and Rayleigh scattering

hasn’t been successful in trial runs. By the Expo, and after some debugging, however this feature

will be available.

Thus adjustable parameters of the model include, spectrum, duration and intensity. These

parameters thus act as independent variables, and by adjusting parameters allow us to view the

behavior of the system under different light conditions, and thus offer recommendations and updates

to current policy regarding urban light usage.

The question naturally becomes, how do we characterize behavior of our system?

The metric depends on three factors, resilience, stability and regime shifts. Through analyzing

network topology and outputted data from the agent based model, these factors are quantified

and sufficiently characterize the positive and negative behavior of the model, which emerge under

different parameter settings.
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5.1 Resilience

I define system resilience as the property of a system to recover from perturbation or disruption.

Similarly, if I target a system, how well will it hold from the attack. My definition emulates the one

established in 1973, by CS Holling or that, ”resilience is the ability of ecosystems to eliminate the

impacts of external disturbances and maintain stability through their own repair.” In biological and

ecological networks, like the one I was analyzing, is often characterized by structural stability of the

network. Thus I could analyze my network’s topology to assess it’s resilience. Thus, I implemented

a edge attack algorithm, that visualizes the cascading and recovering impact of a perturbation or

disruption to a connection between nodes or agents in the system. The algorithm works, by first

selecting random edges to attack (delete) and subsequently deleting the edges with node degrees, or

connections to other nodes in the graph,less than 2. The algorithm is depicted below:

Algorithm 1 Network attack algorithm

Require: :Remove Edge G
while N ̸= 0 do

if D ≤ 2 then
remove edge

else if N == neighbor then
remove edge
add edge if it becomes isolated to N

end if
end while

After the algorithm terminates, I analyzed the topology of the network to assess its resilience.

This was done by searching for the largest connected component in the network. Implemented

through the built in networkx function, connected components. Networks with larger connected

components, or number of connected nodes in a partition of a network were valued as having higher

resilience. These connected components would look like the figure below:
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Figure 8: Connected Components

5.2 Stability

The structural stability of our ecological network is furthered by an additional factor, stability. Sta-

bility places structural resilience in a biological perspective, by studying the strength of an ecosystem

in the face of adversity. The study of stability is rooted in zoologist, Charles Elton’s stability-diversity

hypothesis, that in ecological systems, biodiversity enhances stability of an ecological system. While

recently met with revisions to consider the complexity of systems that contribute to stability, it

is accepted that biodiversity is positively correlated with stability of an ecosystem. Thus, we can

use biodiversity as an implicit metric for the stability of an ecosystem. Biodiversity is calculated

through a metric known as Simpson’s diversity index. The equation for the Simpson’s diversity

index is as follows: 1 minus the sum of the number of individuals within a group times the number

of individuals minus 1 quantity over the total population times the total population minus 1. Or as

summarized equation below:

D = 1−
∑

n(n− 1)

N(N − 1)
(3)

Biodiversity is calculated for every network iteration with adjusted parameters, by summing the

number of grass nodes, spider nodes and prey nodes.
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This biodiversity calculation is completed through a python function to calculate the Simpson

diversity index. Biodiversity is then compared against topological features of the networks like

modularity, eigenvector centrality, connectivity, closeness and betweenness centrality to test for cor-

relation to biodiversity. This correlation was assessed by a metric known as one-way ANOVA, which

measures for statistical difference between two groups.In addition, my process also used the f-statistic

and p-values acquired from the variance analysis of ANOVA to measure statistical significance and

correlation between two variables. This preliminary step is necessary, as their is ambiguity in schol-

arship around the general connection of network features and stability. Thus it was imperative that

I ran my own assessments to determine the best topological metrics for stability All five of the

topological features were easily implementable through the networkX library, as they were built in.

Features that showed positive correlation (via finding Pearson correlation coefficients) to biodiversity

were thus considered in assessing networks stability. Ultimately, the features that were chosen for

highest correlation were used to assess the stability of the parametrically distinct systems. Those

with higher values for a given topological feature would correlate to a higher level of stability. These

features I identified were modularity, eigenvector centrality and connectivity.

Additionally, another metric was or the presence of communities. In a similar vein to the biodi-

versity and topological feature approach, this metric saw perturbations in the form of distinct values

of parameters for light, spectrum, intensity, duration and scattering. The presence of communities

suggest higher stability within a system. The implementation of this approach, I scoured through

popular community detection algorithms and decided upon the Girvan-Newmann algorithm, which

removes edges to identify the tightly-knit communities underlying the network. More of these com-

munities suggested more stability.

5.3 Regime Shifts

The final metric considered in my analysis, was the quantification of regime shifts. The idea of

regime shifts is classical to most ecological research and describes the change in behavior of an

ecological system, or the shift of ecosystems to different states. Catalysts to such transitions are

called tipping points, or as I translated them in my analysis, change points. These change points

anticipate the shift of ecosystem behavior over time and thus, I had to review the time series data
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outputted by my mesa model, where agent population was graphed against time, like the ones

outputted in figure 3. I downloaded my data into a pandas dataframe and then into a csv, ready

to be analyzed by a change point detection algorithm. My algorithm depended upon the ruptures

python library. My algorithm implements a Reproducing Kernel Hilbert Space (RKHS) process that

works by replotting my graphs to the high-dimensional vector space. My approach identifies change

points through three available kernel functions in the rupture library, Linear, RBF and Cosine. This

works as an optimization problem which segments the data based on the change points. At these

change points, I used numerical differentiation to calculate the derivative at each of these change

points. The proportion of negative to positive derivatives was calculated for each network.

6 Results

Both the ABM and network representations for my model were run 17 times,to explore the parameter

space of the 4 independent variables I was looking at, spectrum, duration, intensity and scattering

of light. To choose the sampled points of each parameter I employed simple random sampling to

sample the parameter. For instance, to sample the duration parameter space I got a result like the

following:

Figure 9: Output Sampling

6.1 Stability

I identified the features most closely correlated with biodiversity as eigenvector centrality, modularity,

and closeness centrality of a network. Biodiversity was calculated through the following python

function:

1 import pandas as pd

2 data = pd.read_csv(’data.csv ’)

3 species_counts = data.sum().to_dict ()

4 print(species_counts)

5 def simpson_di(data):
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6 """ Calculate the Simpson Diversity Index from a dictionary of species counts.

"""

7 N = sum(data.values ()) # Total number of organisms

8 if N == 0:

9 return 0 # Prevent division by zero

10 return sum((n / N) ** 2 for n in data.values () if n != 0)

11 diversity_index = simpson_di(species_counts)

12 # Print the result

13 print(" Simpson Diversity Index:", diversity_index)

In which data.csv was the stored csv file of the output of my Mesa model’s data collector for

populations of spiders, grasses and prey. The python code outputted a result for a diversity index

between 0 to 1. Which in the case of a run of my model to investigate the properties of a scenario in

which lights had wavelengths of 707nm, or were approximately red in color I received the following

result:

Figure 10: Simpson’s Diversity Index

To analyze the topological features of the network representation of my model, I simply imple-

mented built-in functions of the NetworkX library, and plotted my results. In the case of a scenario

in which photons were scattered via Rayleigh Scattering, I gathered the following outputs

The final correlated topological property of a network, modularity, or the density of connections

within communities or modules of a network was written within a community detection algorithm.

My algorithm graphed the modularity, calculated through a NetworkX function for each k-component

or connected sub-graph within the network. For a source of ALAN that lasted 9 hours or epochs a

day, the corresponding network produced the following modularity graph for each k-component:
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Figure 11: Eigenvector Centrality
Figure 12: Closeness Centrality

Figure 13: Modularity Graph

Such relevant topological features as proven by ANOVA f-statistics, calculated through available

functions in python’s SciPy library, shown below, like eigenvector centrality, modularity and closeness

centrality were calculated for each set of sampled points within the four parameter spaces.
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Figure 14: One-way ANOVA p-values and f-statistics for 5 topological features, Eigenvector Cen-

trality, Modularity, Betweenness Centrality, Closeness and Degree Centrality

Since higher f-statistics indicate higher correlation between two variables, Eigenvector Central-

ity, Modularity and Closeness were chosen as the most indicative metrics of biodiversity and thus

stability.

Some loose trends emerged, the aggregated eigenvector centrality of networks with variable light

spectra, bore interesting results. For example, cooler lights or lights with wavelengths between

400 and 600, or violet to light green had the highest eigenvector centrality, of 0.8522 an 0.8546

respectively. Eigenvector centrality refers to nodes with the most influence over other nodes within

their network, this may characterize the significant impact of warm colors on ecosystems. This was

countered by a general trend, warmer lights contribute to greater stability within an ecosystem,

as the aggregated score of modularity, eigenvector centrality and closeness centrality was higher

with warmer colors between the spectrum of 650 to 750nm or deep orange to red, with aggregated

scores almost 0.2 greater than their cooler color counterparts. Furthermore, 3 hours of ALAN usage

proved the most network stabilizing, as it consistently ranked highest through the aforementioned

topological features, and earned an aggregated score of 0.1894116, the highest of any of the changed

variables for duration. For intensity, 20 lux proved the most stabilizing with an aggregated score of

0.4343086667, the highest of any of the changed variables. In scattering, Mie scattering was more

stabilizing with an aggregated score of 0.1822181333. This outcome is consistent with our other

findings, since Mie scattering often prefers or occurs with photons of longer wavelengths, or warmer

colors on the light spectrum.

Additionally, other metrics were used to analyze the stability of our given network. The process
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was initialize through built-in functions of NetworkX like community detection algorithms. To

commence my analysis I use one such built-in function, that identified communities through the

Girvan- Newmann algorithm. The code for the aforementioned steps is below:

1 G = model.G

2 communities = list(nx.community.girvan_newman(G))

3 print(communities)

This code in tandem with visualization libraries and the discovery of modularity for individual

nodes or agents in a system resulted in results like the following (specifically for 707nm wavelength

of light):

Figure 15: Communities Graph, note colors signify different communities. In this image there are 5

colors corresponding to 5 identified communities

My code also allowed me to look at the largest connected component in the network of the socio-

ecological system, as well as the degree, or how many edges branched off from a node in the network

in the images below:
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Figure 16: Topological structure

Both degree centrality and connected components are good metrics of stability, because they

reveal the graphs and by relation, the system’s ability to tend towards becoming a k-connected

graph, in which removing edges from the network never disconnects the network.

Communities were most prevalent at certain conditions within the investigated parameter space.

For example, scenarios with high modularity resulted in a greater number of communities. This logic

is consistent, as modularity measures the degree to which a network can be partitioned or separated.

This logic follows S.Gomez and P.Jensen’s Balance Theory which states the following, where Q−
E

and Q+
E refer to the negative and positive edges that may separate communities. Negative edges

form out of severed relationships, like the prey and the spider, and ultimately particular settings

of light and the organisms within the system. Positive edges on the other hand form from positive

relationships between organisms in this case:

Figure 17: Balance Theory

For spectrum the highest number of communities was discovered for lights with wavelengths
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of 686 nm. For intensity, the setting of the lights with 20 lux produced the greatest number of

communities, for duration 3 hrs of ALAN usage once again prevailed amongst the other parameter

settings and held the highest number of communities. Mie scattering triumphed over Rayleigh

scattering for the greatest number of communities.

6.2 Resilience

The analysis and emergence of stability in a network offered insight into the properties of the ecosys-

tem, by associating topological features with observed properties of the system, like biodiversity or

population statistics. Resilience, conversely, quantifies properties of the representative network of an

ecosystem, yet still lends much insight into the structural robustness of our system. Thus I employed

the previously defined node attack algorithm to measure the structural resilience of a network. Us-

ing a python algorithm to attack nodes, for a scenario in which the intensity of lights was 33 lux, I

uncovered the following result or output from my algorithm. The largest connected component was

subsequently outputted afterwards.

Figure 18: Graph after node attack
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Additionally I ran the algorithm multiple times as an additional metric of measuring how long a

network could withstand the node attack algorithm. The second and third runs of the node attack

algorithm on the network with light intensities of 33 lux are shown below:

Figure 19: Graph after multiple node attacks

Resilience was ultimately assessed by the number of connected components, still intact after the

node attack algorithm had affected a network once. Unfortunately there weren’t any clear patterns

that emerged from the largest connected component analysis, which opens up further questions on

the disjointed relationship of structural resilience to outwardly expressed properties of systems like

stability and regime shifts, or a slight error in my code that might shield such results. As shown in

the graph below, the values for largest connected component for each value of stayed level across

the parameter range of light intensity, and bears only a slight resemblance to a parabolic curve.:
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Figure 20: Exceptions

Similar relationships were identified for the rest of the three independent variables.

6.3 Regime Shifts

Regime Shifts, the final component to my analysis, partition the data outputted by the Agent-

base model by change points, or slight shifts in the state and behavior of populations of, in this

case, spiders, prey and grasses. I used three kernels and ultimately identified the cosine kernel as the

overwhelmingly worst kernel to identify such change points. The Linear and RBF kernels were much

better at doing so, as exemplified by the change point detection algorithm output on a scenario with

lights wavelengths of 414nm:

Figure 21: Kernels change point detection for spiders, prey and grasses

Regime shifts, after identified through change point detection were thus classified as either pos-

itive or negative change, by simply calculating the derivative of the change point through a simple

python implemented numerical differentiation algorithm below which takes a dictionary of points

uploaded from my data.csv file:
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1 h = x[1] - x[0] # Increment between adjacent x values

2 derivative_at_index = (y[index + 1] - y[index]) / h

3 print("The derivative at index", index , "is approximately :", derivative_at_index)

4 if derivative_at_index > 0:

5 print(" positive change ")

6 else:

7 print(" negative change ")

The results approximately followed those observed in the stability section, with the most positive

change at a wavelength of 686 nm for the spectrum parameter with an overall derivative of 1.357,

at 9 lux for the light intensity parameter with an overall derivative of 1.245, at 3 hours for the

duration parameter with an overall derivative of 1.578 and finally Mie scattering prevailed once

again over Rayleigh scattering with an overall derivative of 1.286. Additionally, as I outputted 3

kernel functions to approximate the change points, on average the RBF and Linear kernel functions

approximated the change points more accurately, but there were some exceptions. For example, for

the scenario in which ALAN lights had a wavelength of 591 nm, the Cosine kernel function proved

one of the better approximations:

Figure 22: Cosine Kernel Function for Prey

7 Policy

7.1 Existing Policy

Policy on ALAN is quite variable throughout the contiguous United States, and becomes even more

pronounced throughout the world. Thus, for the scope of my project, I analyzed the current in place

policies in New Mexico, USA.
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Figure 23: New Mexico ALAN map

The Dark Skies Conservation Trust of Santa Fe instituted the Night Sky Protection Act in

1999, which, a novelty for it’s time, ”makes dark skies a priority in New Mexico for the health of

its people, wildlife, and economy. The act requires that outdoor lighting be fitted with shielding

that directs light downward, rather than upward or laterally.” This light positioning ensures the

view of a partially or fully visible night sky, however its effects on biological systems have not been

thoroughly investigated and advised. As Ed Yong, a science writer for the Atlantic summarizes

in his novel, An Immense World, ”The daily and seasonal rhythms of bright and dark remained

inviolate throughout all of revolutionary time–a 4-billion-year streak that has began to falter in the

19th century.” Artificial lighting thus proves a threat to the ’sensory-scapes’ of a great variety of

species, in addition to obscuring our view of the night sky. Position of lights is thus not as important

to the condition of an ecosystem, but rather properties of light like spectrum,duration,intensity and

scattering are more crucial to consider. In the New Mexico House Bill 461 of 2009, 10 years after the

Dark Skies Conservation Trust instituted their efforts, made slight revisions to the outdoor lighting

policies in New Mexico. Most notably was a sole mention of intensity of light provisions as stated

below:
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Figure 24: Bill 461

Thus my recommendations lie in reassessing this statement as well as adding potential updates

to the house bill based on my findings above.

7.2 Recommendations

Note: While I have results, before the expo, I want to ensure the accuracy of my data before

adapting the House Bill 461 to better suit my findings, however I know that adding provisions

to change to warmer colors and accordingly, larger wavelengths of light is imperative, as well as

decreasing duration to around 3 to 6 hrs a day of light, and keeping intensity at around 9 to 30 lux

is preferable for the health and success of surrounding ecosystems and natural habitats.

8 Conclusion

The central question of my research calls for awareness around light pollution. The answer lies in

policy. Policy and law after all is our best measure to enforce rules and influence the public. As Steve

Kaisler at the university of Notre Dame explains, “The nature of complex systems can be assessed

by investigating how changes in one part affect the others, and the behavior of the whole.” Thus by

making minor changes to the light agent, I hope to explore and compare the emergent behavior of

these different networks to inform infrastructural and social policy. Ultimately at the heart of my

process is the use of science for the embetterment of the world, this same sentiment is what drives

others in the scientific field, and the other systems of people and organisms in the world. It is the

emergent behavior to do good that unites us, and to recognize the unsung systems around us.
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9 Achievements

My greatest achievement was learning how to use both the NetworkX python library and the MESA

agent-based modeling library as well as exploring systems and network analysis and how they could

be interpreted in a biological framework.
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