

Point Cloud Surface Reconstruction
Andrew Morgan1 (Sole Author), Nathaniel Morgan2 (Project Mentor/Teacher)

1Los Alamos High School, Los Alamos, NM, USA
2Project Mentor and Teacher, Los Alamos, NM, USA

 Abstract

The efficient and versatile reconstruction of the surface of point clouds remains a notable

problem throughout computer science, physics, robotics, engineering, and other related

fields. Many current methods struggle with noisy data, uneven density distribution, and

discontinuities. This paper proposes a solution that uses a level-set-based method

integrated with a linearized sparse octree, neighboring node caching, a min-heap binary

tree, and surface tension simulation to parse large datasets to reconstruct point clouds as

watertight meshes. A basic prototype in Python 3 validated the utility of this approach

and provided a foundation on which to construct optimizations. Translations into C++ 17

and Rust implemented these additional concepts and demonstrated notable performance

improvements over previous iterations.

1. Introduction

Point clouds are essential tools for countless fields and applications, including medicine, protein

synthesis, robotics, computer graphics, video games, geology, lidar, 3D scans, and more. They

provide a versatile and unique way to store many types of data and allow for novel algorithms.

However, due to their unstructured nature, they have limited direct utility. Many applications

require well-defined discrete surface topology, often as polygonal meshes, which point clouds

cannot provide. Extracting the isosurface offers a solution and bridges this gap, extending its

utility.

Many existing solutions utilize a wide range of methods and techniques. However, many

of these have limitations, such as difficulty extracting the isosurface from noisy, incomplete, and

1

A. Morgan – Point Cloud Surface Reconstruction

discontinuous data sets. Point clouds are often structureless and highly variable, making it

challenging to form generalizations and find easy solutions. Additionally, specific applications

require quick processing of point cloud data for real-time applications.

Point clouds can range from a few hundred points to sometimes over a billion, further

complicating the matter. Creating a versatile algorithm to handle this extensive range of data and

inconsistent and missing information proves challenging. Any solution has to balance

performance and memory consumption, as these data sets can reach many gigabytes in size.

This paper proposes an optimized hybrid level-set-based method to help combat these

problems. The method takes in an arbitrary point cloud and returns a watertight discrete mesh.

Additionally, it is relatively versatile and can handle any number of points, from one to millions.

Unless cited otherwise, all of the work and code created in this project was done by Andrew

Morgan for the 2025 NM Supercomputing Challenge.

Section 2 discusses multiple approaches to this problem. Section 3 follows, breaking

down the steps in the pipeline of the proposed solution. Then, Section 4 explores data structure

optimizations, specifically a sparse, linearized, adaptive octree. Section 5 discusses the program's

results and validates this approach's effectiveness. Section 6 summarizes the findings for the

proposed method.

1.1 Background Information

A quick summary of some background information regarding a few topics mentioned may help

in understanding some of the content of this paper.

 1. A tree data structure is a structure that starts with a root node. Then, successively, each

node starting at that root has a set number of children which may be filled, slowly branching

outwards like how the branches of a tree start as one, and over time branch outwards with each

branch having its own branches.

2

A. Morgan – Point Cloud Surface Reconstruction

 2. A perfect binary tree structure is a tree data structure where all branches get fully filled

out and progress to the same depth. An imperfect tree would have branches that terminate early

or don’t have all their children. See [1] from GeeksforGeeks for further information.

 3. Point clouds are an arbitrarily sized collection of unordered points; they often

collectively represent a larger object or structure.

 4. Hashes or hash codes refer to a unique index or value resulting from a given input.

Some hashes are random, and others are structured. Hashes are fixed-size and often satisfy

certain conditions that the former data couldn’t. For example, converting a string into an

unsigned integer using a hashing algorithm would allow the value to act as an index within an

array.

 5. Data structures refer to varying methods of storing memory as well as the associations

one piece of memory has to another within the collection. Grids are single or multi-dimensional

arrays representing a rectangular area in the form of evenly sized and spaced boxes.

Two-dimensional grids are also called matrices.

 7. Vectors are a continuous array with a dynamic size that never has holes in the middle

(often called lists). Removing and adding items to the center or start does reduce performance,

though; any values beyond it get shifted in memory to make room or fill in a void, resulting in a

large amount of memory movement.

2. Related Work

Many solutions exist for surface reconstruction, with varying strengths and weaknesses. Some

more traditional methods, like marching cubes, require a structured scalar field. However, the

marching cubes algorithm is still practical as an intermediate step in a more extensive process;

marching cubes standing alone is valuable in many other contexts involving more structured

data. Other traditional algorithms, such as Delaunay triangulation, require structured data and

can be very slow on large data sets. Requiring structured data presents a complication, as many

3

A. Morgan – Point Cloud Surface Reconstruction

point clouds don’t have an explicit structuring or order. However, this doesn’t mean these

methods don’t have utility, as they’re still widely used and play a key role in many areas.

 Some newer approaches leverage artificial intelligence (AI) based methods, although

they, too, have their strengths and weaknesses. High frequency, fine-tuned details, and more

complex topology are intricate to capture with AIs. AIs often excel in a specific area, although

they struggle in others. Additionally, AIs require extensive data sets, which, combined with the

already significant size, complexity, and scale of point clouds, leads to high computational cost

and time complexity. Furthermore, training an AI on complex surface topology proves

challenging as there are countless variations and a lack of structure or unified patterns between

or inside data sets. These factors limit the adaptability and generalization of AI implementations,

making them fall short of the overarching goal of this project.

 There are many other miscellaneous solutions, although this project focuses on level-set

methods. Level-set-based methods rely on mathematically extracting the isosurface level through

various means. Many implementations utilize signed distance fields (SDFs) to represent the point

cloud. SDFs are often much more structured, even with an adaptive data structure (for example,

an octree or kd-tree), allowing for more traditional methods, such as marching cubes or dual

contouring, to be combined into a systematic pipeline. In other words, utilizing SDFs in

conjunction with other techniques allows for hybrid methods, balancing accuracy, performance,

memory consumption, and adaptability. This adaptability while maintaining reasonable

performance makes a hybrid level-set-based method well-suited for the project’s goal.

3. Signed Distance Field Representation

While point clouds may be highly variable, the signed distance to the nearest point at any given

position has much more structure. A primitive way to choose which points to sample the signed

distance is to create a 3D array with known bounds and positioning. This primitive solution is the

exact approach taken for the prototype in Python 3. However, it has inherent flaws.

 Because arrays are a fixed size and spacing, areas of low detail (i.e., very few or no

points) require the same amount of memory allocation as an area with lots of detail. Additionally,

4

A. Morgan – Point Cloud Surface Reconstruction

when computing the signed distance, low-detail regions will receive the same computation time

and resources as those of high detail. Additionally, areas of low detail, which don’t need a lot of

expensive computation or significant memory allocation, receive a large portion of the available

resources. The over-allocation of resources in low detail areas also takes away critical

computation and memory necessary to evaluate complex topology regions accurately.

 However, using an adaptive octree data structure can fix this issue. While octrees are far

more complex than traditional grids, the implementation mentioned in this paper adaptively

subdivides the structure in areas of high and complex detail while giving sparse areas more

limited representation. This data structure, for one, saves a lot of memory. In a simple test case, it

consumed nearly 29,000% less memory when storing just the signed distances (from 8MB down

to 30KB for a basic grid of 64-bit floats, not including additional information on the actual

structure). The benefit of the octree is further compounded because there are fewer nodes or

points at which to sample the signed distance, and less computation is needed overall. This

reduction in computation and memory allows for increased resources in more complex and

intricate point cloud sections, resulting in greater detail and precision. More depth on this octree

implementation and other data structures are in Section 4.

 There is one issue with this current method. A known surface contour is necessary to

create a signed distance field (SDF) instead of a regular distance field. Constructing an unsigned

distance field from the point cloud instead of an SDF alleviates this problem. After this, an

algorithm determines which sections are solid and which are hollow. A shell around the surface

is then created by generating the exterior edges of the part(s). Because this shell is solid, the

known surface contour allows for calculating a proper SDF. This pipeline process is broken

down further in Section 3.1.

3.1 Signed Distance Pipeline

One inherent issue in generating a signed distance field, as discussed in Section 3, is that a

known surface contour is necessary to get the signed part of an SDF. The solution is to break the

5

A. Morgan – Point Cloud Surface Reconstruction

process into four steps: calculating an unsigned distance field, signs, solid edges, and finally,

computing the complete SDF.

 The initial step of creating an unsigned distance field is relatively trivial. The process

involves looping over every node or grid cell in a given data structure and performing a nearest

neighbor search on the point cloud (calculating the minimum distance to the nearest point).

However, some complexity arises when optimizing and executing the search on an octree.

Section 4.1 details the implementation of the nearest neighbor search on an octree.

 A more straightforward optimized solution for a fixed grid is a chunking system, also

referred to as hashing. The process relies on grouping all the points into unique vectors or arrays

based on their local position. A good example is how the game Minecraft divides the world into

16x16 chunks. These chunks allow for a smaller, localized search to expand as needed to find the

nearest point. Creating a smaller search radius improves performance by looking over fewer

points in any given search. Implementing this solution in the prototype script in Python 3 gave

decent performance gains, considering the reduced complexity compared to other algorithms.

 Step two calculates the signs for the unsigned distance field using a novel algorithm. The

algorithm calculates every grid cell by repeating the following set of 4 steps. (1) The initial step

is to loop over all 1D slices facing a single axis and step through each cell one by one. (2) At

each marched step through a given slice, check the unsigned distance; if the distance is less than

the isosurface level, continue stepping along until the distance is greater than or equal to the

isosurface level. (3) If the grid cell in the corresponding array for storing signs contains a filled

point, save the current tracking sign as that sign and continue along; otherwise, flip the tracking

sign and fill the entire region between the boundaries created by the isosurface and unsigned

distance field with that sign. (4) Repeat these steps until every slice finishes its calculation. Like

previous algorithms, octrees cause complications and require modifications to the underlying

algorithm; Section 4.1 goes into these necessary modifications.

 Step three involves calculating a shell around any object’s exterior edges (in other words,

voxelizing the distance field of the point cloud). Similar to the first step, the process is relatively

simple. The primary step is to go through every grid cell or node and check a few conditions: if a

6

A. Morgan – Point Cloud Surface Reconstruction

hollow point is directly adjacent to the cell or node (diagonals don’t count) and the current

position is solid, add a new surface point.

 The final step builds upon the previous step to generate the final SDF. Similar to the first

step, start by going through every point and calculating the unsigned distance. However, this

time, use the surface shell rather than the point cloud to calculate the unsigned distance. After

getting the distance, check the sign at the given node or grid cell position; if the sign indicates

it’s solid or the original unsigned distance is less than the isosurface level, flip the sign of the

current distance. This final step concludes the calculation of a proper SDF, allowing a

continuation in the larger pipeline.

3.2 Surface Tension Simulation

Due to the nature of the SDF generation, natural surface ungulations occur in the reconstructed

part. However, a scalar field surface tension simulation solves this problem by smoothing higher

frequency bumps on the surface; this method also preserves a lot of lower frequency bumps,

although it won’t work as well on every application. [2] breaks down the math behind the surface

tension method. The surface tension simulation works by finding the curvature of the surface and

raising the troughs while dropping the peaks. A summary of the math from [2] is as follows:

 The first Equation (1) solves for the level set field while applying a front velocity of F. ɸ

represents the level set field. i, j, k represent the position, and they can also represent the index

within the grid. t represents time.

 (1)
ϕ
𝑖,𝑗,𝑘
𝑛+1−ϕ

𝑖,𝑗,𝑘
𝑛

∆𝑡 = 𝑚𝑎𝑥(𝐹, 0)∇
𝑖,𝑗,𝑘
+ + 𝑚𝑖𝑛(𝐹, 0)∇

𝑖,𝑗,𝑘
−

Where:

 ∇
𝑖,𝑗,𝑘
+ = [𝑚𝑎𝑥(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑖𝑛(𝐷+𝑥ϕ, 0)

2
+...

7

A. Morgan – Point Cloud Surface Reconstruction

... 𝑚𝑎𝑥(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑎𝑥(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑧ϕ, 0)

2
]

1
2

 ∇
𝑖,𝑗,𝑘
− = [𝑚𝑖𝑛(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑎𝑥(𝐷+𝑥ϕ, 0)

2
+...

... 𝑚𝑖𝑛(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑖𝑛(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑧ϕ, 0)

2
]

1
2

D-x refers to the backwards finite difference operation in the x direction. Dx refers to the forwards

finite difference operation in the x direction. This applies to all three dimensions – x, y, and z. V

is a constant representing a constant velocity inwards or outwards; it can either keep the object’s

size or shrink or expand the object depending on its value. F is defined as the front velocity and

equals:

 𝐹 = 𝑉 − κ

V is a constant that moves the level set field in the normal direction. Kappa is the curvature of

the front:

 κ = ∇ • ∇ϕ
∇ϕ| |

The second term equates to the surface normal. Multiple iterations each solve these equations

and adjust the scalar field, smoothing it over time. The more time steps (while shrinking the time

duration), the better the results. Some parameters can lead to instability and undesired results if

not correctly set.

8

A. Morgan – Point Cloud Surface Reconstruction

3.3 Isosurface Extraction

Signed distance fields are the first step to reconstructing the surface of a point cloud. However,

an intermediary step is necessary to provide a more discrete representation. Some traditional

reconstruction algorithms, like marching cubes and dual contouring, become useful here. The

previous year’s submission, which implemented marching cubes, acted as an initial solution for

the Python 3 prototype and basic C++ implementation.

 However, complications arise when applying marching cubes to a more dynamic

structure, like an octree. While many solutions exist, most create intersecting geometry, which

can lead to inconsistencies in physics simulations and other applications, or have non-watertight

gaps. A method that solves this, proposed in [3], not only creates watertight meshes but also does

so efficiently and without modifying the underlying octree; in other words, the octree is

unconstrained, allowing for optimizations tailored directly to point clouds. The method relies on

constructing a set of edge trees and using them to properly align geometry to intersecting node

boundaries when using a hybrid-dual contouring approach. Section 4.1 dives into the

implementation a bit deeper.

3.4 Hybrid Reconstruction Pipeline

Combining these steps — unsigned distance field calculation (Section 3), calculating

discontinuities and signs (Section 3.1), surface tension simulation (Section 3.2), and isosurface

extraction (Section 3.3) — creates an efficient pipeline from a point cloud to a discrete polygonal

mesh representing its approximate surface.

 Each step serves a purpose in the greater pipeline. The first step is gathering a more

useful and structured representation of the point cloud — this initial step contains multiple steps,

which Section 3.1 breaks down. From there, the surface tension simulation can smooth any

artifacts and unnatural surface undulations. Finally, extracting a level set of that final scalar field

produces a discrete and water-tight polygonal mesh; this step produces an STL file, allowing

seamless integration of the mesh into most commercial software along with many algorithms.

9

A. Morgan – Point Cloud Surface Reconstruction

4. Octree Data Structures

While this pipeline can create great results, it also consumes excessive resources from

unnecessary computation and a massive memory footprint. A solution to this overconsumption

of resources, albeit far more complex than a fixed 3D array, is to use an octree data structure

instead. By dynamically subdividing the octree’s node structure — essentially just adding more

children to create a deeper tree — in areas of high complexity and detail, the octree can represent

sparse sections with limited memory and computation while also redirecting those resources to

regions of higher topological complexity.

 Like other tree-data structures, octrees have a root node but, from there, have exactly

eight children, each of which are nodes capable of creating more children nodes to branch the

tree further out. Each node represents a cube or rectangle, and each subdivision divides the

parent bounding box into eight equally sized boxes. The leaf nodes, which represent the deepest

nodes that have no children of their own, store a vector of indexes referencing which points in a

static array, representing the point cloud, fit within their bounding box. One way to do this is to

keep a constant address or pointer referencing the original array. Alternatively, when needed,

provide a parameter for the point cloud in the methods of the octree structure in languages like

Rust. By passing the point cloud in as a parameter, it keeps its ownership within its original

scope, preventing ownership and borrowing errors.

 To dynamically subdivide the octree, follow a set of 3 rules. (1) If the current depth has

reached the maximum specified depth for the octree, push all point indexes within the bounding

box into an array or vector for the current node, and then stop subdividing as it’s now a leaf

node. (2) If there is either one or no points within the current node’s bounding box, turn the node

into a leaf node; in other words, stop subdividing the particular node. (3) If there are multiple

points within the node’s bounding box, which means the previous two rules weren’t satisfied,

subdivide the current node into eight children nodes and continue the rule-set for each of those

individual nodes.

10

A. Morgan – Point Cloud Surface Reconstruction

 Just these steps alone can provide significant performance gains. However, there are

other possible improvements. These other optimizations rely on linearizing the data structure.

Linearizing an octree involves representing all the data in a single, contiguous array. This paper's

linearization implementation involves utilizing an array where each element contains another

array of eight integers. Each of those eight integers represents an index to that exact same array

to act as a pointer to the node’s children. In the case of a leaf node, the eight indexes can either

be replaced by null or by a value representing null; in the context of Rust, Some(index)

represents standard indexes, while leaf nodes contain 8 None’s. This structuring provides an

efficient way to follow the tree’s many branches and determine whether a node has children or is

a leaf node. To store points in a leaf node, another array aligning with the original contains

vectors to store references to points in the point cloud; an array with a predetermined size also

works for representing the vector in memory. Utilizing that vector, adding a point is as easy as

accessing the array at the index of the leaf node and pushing the points’ indexes in the point

cloud to the vector.

 This linearized design has a few notable advantages. The first benefit is that the octree’s

data lines up contiguously in memory, allowing for more cache hits and quicker data fetches;

cached information is also naturally aligned sequentially in increasing order, allowing for more

efficient lookup algorithms, such as binary searches (also known as a bisect search).

pub fn BinarySearch <T: Eq> (points: &Vec <T>, searchValue: &T) ->

. Option <T> {
 let mut currentIndex: usize = 0;
 let mut dividedSize = points.len();

 let mut halfWidth: usize;

 // this could also be a loop; however, this prevents runaway code
 for _ in 0..MAX_BINARY_SEARCH_ITERATIONS {
 halfWidth = dividedSize / 2;
 dividedSize -= halfWidth; // splitting the bounding size
 if let Some(middleValue) = points.get(currentIndex + halfWidth) {
 if middleValue == searchValue {
 return Some(currentIndex + halfWidth);
 } if middleValue < searchValue {

 // splitting the search

11

A. Morgan – Point Cloud Surface Reconstruction

 currentIndex += halfWidth;
 }
 }
 } None
} // Rust

Mortan codes (Z-order curves) [4] are another useful and performant hashing technique

involving bit manipulation to create unique codes for any position that maintain spatial locality

(two neighboring points will have similar hash codes). Hash maps are sometimes useful due to

some variability in the codes’ values. The algorithm works by taking three 32-bit numbers

representing the three axes. The bits interweave, so every three bits contain a bit from the x, y,

and z coordinates, creating the pattern: x1y1z1x2y2z2…. This results in a 96-bit unique hash,

although Rust has 64-bit and 128-bit integers, so a larger number than the code is necessary.

Because of the implementation within the octree, the code gets represented as an unsigned

integer (this makes the final type a 128-bit unsigned integer or, in Rust, u128).

pub fn GetMortonCode (&self, xi: u32, yi: u32, zi: u32) -> u128 {
 let mut x = xi as u128;
 x = (x | (x << 16)) & 0x030000FF; // magic nums -> stackoverflow
 x = (x | (x << 8)) & 0x0300F00F; // spacing the x bits out
 x = (x | (x << 4)) & 0x030C30C3; // creates room for y, and z
 x = (x | (x << 2)) & 0x09249249;
 //... the same as above for y and z

 x | (y << 1) as u128 | (z << 2) as u128 // interweaving all bits
} // Rust

Another performance gain occurs as accessing an array at an index is faster than chasing

repeated pointers to other instances of nodes. This second point compounds with the previous

ones and also alleviates the issue of slow neighboring node computation times; neighboring

nodes are expensive to find and scale alongside the number of points and depth of the octree.

This expensive calculation becomes problematic because the nearest neighbor search traverses

the octree from node to node to identify nearby points while minimizing the search radius, and

many neighboring nodes are needed to do this. Further compounding that issue, the nearest

neighbor search must run for every node multiple times. However, because each node in the

linearized structure is represented by a single integer index/identifier, another array that aligns

12

A. Morgan – Point Cloud Surface Reconstruction

with every node’s index can store a vector containing the indexes to every neighboring node for

that given node. While this caching system requires an expensive computation for every node to

find all its neighbors upfront, it prevents the necessity of doing these computations many times

during each search. In fact, with this caching method, traversing the octree is possible in constant

time, regardless of the number of points or the octree's depth (the search algorithm runs in log n

time due to incorporating additional algorithms beyond traversal). Implementing a similar

caching system with a nonlinear structure would be incredibly difficult; any solution would still

involve an expensive descent from pointer to pointer every single time a cache lookup happens.

While challenging to implement, these two major optimizations provide significant performance

gains, making them worthwhile. The specific implementation of the nearest neighbor query on

an octree is very complex compared to chunk or grid-based methods. Section 4.2 details the

exact implementation used in this paper.

4.1 Octree Pipeline Integration

While the octree provides notable improvements, other algorithms within the greater pipeline are

inherently unable to handle the variability. The sign generation algorithm falls short here because

it traverses line by line, row by row; however, octrees don’t have a perfectly aligned structure

because of their adaptive structure. One solution is using a system where all nodes bounding the

edges of the outline get pushed to a vector, and that vector acts as the starting point for further

iterations; every iteration, the sign gets flipped, beginning at a point on the outside with a value

of one representing hollow space.

 The second issue falls within the surface tension algorithm. Octree-based scalar-field

surface tension simulations are much more complex than their grid-based counterpart. The

solutions go beyond the scope of this paper. Because of the complexity and scope, the surface

tension simulation was discluded for the octree-optimized pipeline despite the notable

improvements on lower resolution point clouds.

 The final problem arises when reconstructing the surface of the scalar field. With a

grid-based solution, marching cubes provided excellent results. However, Marching Cubes

13

A. Morgan – Point Cloud Surface Reconstruction

doesn’t translate as well to an octree. A solution proposed by [3] uses a hybrid method stemming

from dual contouring. The approach proposed in that paper took in an unconstrained octree and

returned a water-tight mesh. Again, this solution goes a bit beyond the scope of this paper. The

paper cited below [3] provides an excellent breakdown, though.

4.2 Nearest Neighbor Query

One of the more complex aspects of integrating the octree is the nearest neighbor search

algorithm (related to voronoi cells). [5] proposes an elegant solution and inspired some

optimizations. For this paper’s implementation, an expanding search radius provides the fastest

results by pruning unnecessary data. However, finding the neighboring nodes to any given leaf

node proves challenging. Additionally, searching for neighbors is too costly. A solution is to use

a neighbor caching system; an array the length of the number of leaf nodes stores vectors

containing the integer indexes of all neighboring nodes (discussed in Section 4).

 From there, the solution is relatively trivial. Get all the neighbors starting at the node

nearest to the sample position. Add all those neighbors to a priority queue (4.3) based on their

distance to the query point. Then, for every iteration, pop the root node from the queue and

continue. For every point encountered, keep track of the shortest distance. Finally, once the

queue is empty or the shortest distance to the nearest node falls beyond the minimum distance

found, return that minimum distance.

 Locating the nearest leaf node to a given position is another challenge, though not nearly

as complex. The first step is to force the query point into the bounding box of the octree using

min and max. From there, start at the root node and iterate the number of times as the octree is

deep. While iterating, keep track of the current node. The size of all nodes at a given depth is

stored in a pre-computed array (1.0 / 2.0depth). Take the query point and find its distance from the

node's base. From there, divide that difference's x, y, and z components by half the node’s size.

Take the result and cast it to an integer of 0 or 1. Each node’s eight children have different offsets

from the node’s base, which get stored in a constant order; using that known order, the current set

of three integers allows for a reverse lookup of offsets to get the child’s index within the current

14

A. Morgan – Point Cloud Surface Reconstruction

node. Repeat that until encountering either a leaf node or the maximum depth (which would also

be a leaf node). Some algorithms may require tracking the path to the node for traversal up the

tree; usually, this only requires the last calculated leaf node, resulting in a negligible memory

size.

4.3 Min-Heap Binary Trees

Min-heap binary trees, also referred to as priority queues, are binary trees where the root node

always contains the smallest value. The counterpart would be a max heap binary tree; however,

in the context of this paper, it isn’t needed. Binary trees are similar to octrees. However, each

node only has two children. GeeksforGeeks [6] provides a great article that breaks down binary

heaps and inspired the implementation used in this paper.

 The C++ standard library has a priority queue implementation that has min and max heap

variants (the following is a min-heap binary tree, dictated by std::greater):

std::priority_queue<double, std::vector<double>,

. std::greater<double> > nodeQueue;

 Some other languages’ standard libraries may include an implementation with varying

performance and versatility. For a manual implementation, the following dictates a min-heap

binary tree; max-heap trees would be the same except search for the maximum instead of the

minimum value. Insertion, popping, and swapping are the most important methods for this binary

tree.

 Swapping. The backbone of the other two algorithms relies on swapping values to satisfy

the tree’s rules: no value should be below a value greater than itself. When inspecting a node,

look at the first branch; if the value is less than the current one, swap their values (ideally

without altering the underlying data structure to reduce memory movement). Otherwise, check

the right branch and do the same. If the condition fails for both branches, the value is in the

correct position. Usually, this method gets called until the condition fails or the value reaches the

bottom of the tree. This swapping method can also begin at the bottom of the tree and swap

upwards to meet the condition until the parent is equal to or smaller than the current value.

15

A. Morgan – Point Cloud Surface Reconstruction

 Insertion. The first step requires constructing a new node with the given value. This new

node becomes a child for one of the leaf nodes. After that, the swapping method iteratively

places the value into the proper position.

pub fn Push (&mut self, value: (f64, usize)) { ... } // Rust

 Popping. The first step involves popping the root node and returning its value (and

possibly co-value or index so it can reference additional information) – the root is always the

smallest value. However, the binary tree requires a root node to function. The solution involves

first removing one of the leaf nodes. From there, the leaf node replaces the root node. Then, the

swapping method satisfies the conditions by swapping the root node downwards.

pub fn Pop (&mut self) -> Option <(f64, usize)> { ... } // Rust

 One way to optimize the queue is to attempt to balance the tree in the form of a perfect

binary tree (1.1). Because the tree repeatedly gets restructured, there isn’t always a perfect

solution. The approximate solution explored in this paper relies on tracking the children of all

leaf nodes. Two buffers are necessary to do this: one for future children below the maximum

depth reached and one for the next deepest layer. The first buffer gets used when appending a

new node; the final index of the first buffer represents the child, which receives the new value.

After placing the value, the swapping method moves the value into position to satisfy the

conditions. By having the two buffers, the tree will initially fill voids within the maximum depth

of the tree before expanding the tree’s depth. The second buffer dumps its contents into the first

when it becomes empty. Most of the complexity comes from maintaining both these buffers as

the tree mutates.

5. Validation

A few different scenarios validated the effectiveness of

the approach and implementation. The first method used

mathematical equations to generate a point cloud around a

known shape. After that, the reconstruction pipeline took Figure 1. Hollow Fib. Sphere

in the point cloud, and the results reasonably matched the inputted shape, as seen in Fig. 1. A

16

A. Morgan – Point Cloud Surface Reconstruction

known geometric model further tested the pipeline—an obj file from the Stanford Bunny (Fig. 2)

allowed for a known comparison while also containing points

that, on their own, have no spatial connection to each other.

Similar to the first test, the results aligned reasonably well with

the test model (Fig. 3). The

specific Stanford Bunny

model used had multiple

holes in the surface geometry.

However, the pipeline properly Figure 2. Stanford Bunny

filled those holes while maintaining a reasonable level of

accuracy in the overall model. This specific test didn’t use

surface tension smoothing.

Figure 3. Reconstructed Bunny The adaptive subdivision of

the octree required rendering all corner points for every node

to verify the structure and subdivision method. The corner

points aligned with expectations, forming smaller nodes in

regions of denser data while minimizing nodes in lighter areas

(Fig. 4). Figure 4. Hollow Sphere1 Octree

The following are examples of the holes before and after reconstruction:

17

A. Morgan – Point Cloud Surface Reconstruction

5.1 Results

All of the code and assets within this project are available on GitHub. The link is in Section 6.1.

The point cloud data files (the program can load .pcd files, which are similar to .ply files that

contain a slightly different header) used for reconstruction came from [7]. It provided a number

of detailed point clouds, which were invaluable and allowed for excellent results.

 Fig. 5 and Fig. 6 show the reconstruction of the Stanford Dragon. The reconstruction

shows a decent improvement after running the surface tension simulation (Fig. 6). Additionally,

the reconstructed model shows a decent handling of sharp corners (Fig. 7) and finer details (Fig.

8) while also keeping small gaps separated correctly (Fig. 9). Note that the mesh is water-tight.

Figure 5. Unsmoothed Dragon Figure 6. Semi-Smoothed Dragon

Figure 7. Sharp Claws Figure 8. Finer Face Features

18

A. Morgan – Point Cloud Surface Reconstruction

The second result comes from the Egyptian mask [7].

The model contains a thin mask without a bottom.

Additionally, the point cloud is somewhat noisy,

complicating the reconstruction. Fig. 10 shows the

reconstructed mesh, which handled the noisy data and

gaps in the model well, only containing a few minor

artifacts. Fig. 11 shows the bottom of the mask where

the opening is along with the thinness of the

Figure 9. Narrow Gaps mask (the mask should be fairly thin).

Figure 10. Egyptian Mask Front Figure 11. Bottom of the Mask

The final point cloud is a 3D scanned vase [7]. Similar to the mask, the vase has thin walls and a

hollow interior (the Stanford Bunny and Dragon both had solid interiors). Additionally, the vase

has a couple of sharper corners, presenting a challenge that the algorithm handled well.

19

A. Morgan – Point Cloud Surface Reconstruction

5.2 Versitility and Limitations

The implementation covered has many strengths but also many weaknesses. Starting with the

strengths, the algorithm can handle anywhere from a single point to millions – some other

algorithms can’t handle such significant disparities in data sets. Additionally, the algorithm can

perform well on noisy or incomplete data sets (as seen with the Stanford Bunny in Section 5). In

addition, while computational parallelization hasn’t been implemented yet, many steps within the

pipeline are well suited to run in parallel, which would provide significant performance

improvements over the current results.

 However, there are some limitations facing the current iteration of this project. The first

is that the many steps in the pipeline each require allocated memory, and when combined, they

result in a larger memory footprint than ideal; according to the activity monitor, mac’s version of

task manager, the program was using upwards of 1.25GB of ram while running on a dataset of a

quarter million points when not using an octree. Additionally, thin objects can get slightly

thickened due to the SDF generation. Furthermore, because of the SDF generation, surface

tension simulation, and Marching Cubes in the non-octree pipeline, sharp corners and

higher-frequency data can sometimes get smoothed over if the resolution becomes too small

relative to the data. Also, the pipeline as a whole isn’t running quite as efficiently as desired, and

as such can’t be used in real-time applications – although, with additional improvements, there is

potential for significant performance gains over the current iteration. Reconstruction speeds

varied from 30 seconds to 45 minutes (from around 40,000 points to upwards of 500,000 on a

high-resolution grid), depending on the version, optimizations, and parameters like grid size or

the number of points in the point cloud. Note that all benchmarks were taken on an older Mac

M1, so a more performant computer would likely provide better benchmarks.

20

A. Morgan – Point Cloud Surface Reconstruction

6. Summary

A hybrid level-set method provides a dynamic and versatile means to reconstruct the surface of

arbitrary point clouds. Combinations of other algorithms expand that versatility and also offer

greater performance while reducing the memory footprint. The first step of approximately

voxelizing the point cloud provides a decent base to work from – some applications may only

want the voxelized data and nothing beyond. From there, the generation of a proper SDF allows

for a smoother and more accurate representation of the object. Additionally, that SDF is

compatible with the surface tension simulation, Marching Cubes, and other algorithms.

 A surface tension simulation is one such algorithm, providing a smooth output that

removes artifacts and surface ungulations formed from the nature of SDFs. Additionally, a

seamless integration of the simulation into the greater pipeline is relatively trivial.

 Sparse, linearized octrees prove promising, providing excellent performance and memory

with the only tradeoff being the complexity. Caching neighboring cells utilizing the benefits of

the linearization further improves the nearest neighbor search, which has to run many times.

Min-heap binary trees can further optimize the search query, efficiently generating signed and

unsigned distance fields.

6.1 Final Remarks

I would like to thank Nathaniel Morgan for helping me come up with the initial idea for this

project. I would also like to thank him for helping me interpret some of the math involved in the

surface tension simulation.

 In addition, I would like to thank a group at LANL for allowing me to present my project

and for providing feedback on everything. Their library, MATAR, was also very helpful by

providing a memory-safe multi-dimensional array structure for C++ (in place of alternatives like

std::shared_ptr, std::unique_ptr, or unsafe raw pointers).

 All of the code and assets used within this project are on GitHub:

https://github.com/AndrewDMorgan/Point-Cloud-Surface-Reconstruction. The code is 54%

21

https://github.com/AndrewDMorgan/Point-Cloud-Surface-Reconstruction

A. Morgan – Point Cloud Surface Reconstruction

C++, 29% Rust, and 17% Python 3. In total, all three program versions came out to a total of a

little over 4,800 lines. Through development, prototyping, iteration, and revision, over 8,000

lines were written, although much of that got refined and compressed over time.

References

[1] “Types of Binary Tree,” GeeksforGeeks. [Online]. Available:

https://www.geeksforgeeks.org/types-of-binary-tree/. [Accessed: Mar. 30, 2025]

[2] S. Osher; R. and Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag,

2003. ISBM 978-0-387-95482-0

[3] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe, “Unconstrained isosurface extraction on

arbitrary octrees,” in Proc. Eurographics Symp. Geometry Processing, 2007

[4] “Z-order curve,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Z-order_curve.

[Accessed: Mar. 30, 2025]

[5] B. H. Drost, S. Lilc, “Almost constant-time 3D nearest-neighbor loopup using implicit

octrees,” 2018 Machine Vision and Applications. [Online]. Available:

https://doi.org/10.1007/s00138-017-0889-4. [Accessed: Mar. 30, 2025]

[6] “Priority Queue using Binary Heap,” GeeksforGeeks. [Online]. Available:

https://www.geeksforgeeks.org/priority-queue-using-binary-heap/. [Accessed: Mar. 28,

2025]

[7] “RG-PCD: Reconstructed Geomatry Point Cloud Dataset,” [Online]. Available:

https://www.epfl.ch/labs/mmspg/downloads/reconstructed-point-clouds-results/.

[Accessed: Mar. 30, 2025]

22

https://www.geeksforgeeks.org/types-of-binary-tree/
https://en.wikipedia.org/wiki/Z-order_curve
https://doi.org/10.1007/s00138-017-0889-4
https://www.geeksforgeeks.org/priority-queue-using-binary-heap/
https://www.epfl.ch/labs/mmspg/downloads/reconstructed-point-clouds-results/

A. Morgan – Point Cloud Surface Reconstruction

Future Reading

E. Alexiou, M. Bernardo, L. S. Cruz, L. G. Dmitrovic, R. Duarte, E. Dumic, T. Ebrahimi, D.

Matkovic, M. Pereira, A. Pinheiro and A. Skodras, “Point Cloud Subjective Evaluation

Methodology based on 2D Rendering,” 2018 Tenth International Conference on Quality

of Multimedia Experiance (QoMEX), Cagliari, 2018, pp. 1-6. Doi:

10.1109/QoMEX.2018.8463406

B. H. Drost, “Almost constant-time 3D nearest-neighbor loopup using implicit octrees,” Springer

Nature Link. [Online]. Available:

https://link.springer.com/article/10.1007/s00138-017-0889-4. [Accessed: Feb. 14, 2025]

S. Lague, “Coding Adventure: Marching Cubes,” Youtube. [Online]. Available:

https://www.youtube.com/watch?v=M3iI2l0ltbE. [Accessed: Feb. 12, 2025]

“The PCD (Point Cloud Data) file format — Point Cloud Library 1.14.1-dev documentation,”

Point Cloud Library. [Online]. Available:

https://pointclouds.org/documentation/tutorials/pcd_file_format.html. [Accessed: Dec.

20, 2024]

23

https://link.springer.com/article/10.1007/s00138-017-0889-4
https://www.youtube.com/watch?v=M3iI2l0ltbE
https://pointclouds.org/documentation/tutorials/pcd_file_format.html

	Point Cloud Surface Reconstruction
	Abstract
	1. Introduction
	1.1 Background Information
	2. Related Work
	3. Signed Distance Field Representation
	3.1 Signed Distance Pipeline
	3.2 Surface Tension Simulation
	3.3 Isosurface Extraction
	3.4 Hybrid Reconstruction Pipeline
	4. Octree Data Structures
	4.1 Octree Pipeline Integration
	4.2 Nearest Neighbor Query
	4.3 Min-Heap Binary Trees
	5. Validation
	5.1 Results
	5.2 Versitility and Limitations
	6. Summary
	6.1 Final Remarks
	References
	Future Reading

