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Abstract 

As the amount of debris in Low Earth Orbit (LEO) increases, satellites are more likely to 

collide with it. Debris travels at such high speeds that even small debris colliding with a satellite 

could cause catastrophic damage. As satellites are crucial to many important systems, it is 

important to protect these satellites. The common methods of preventing collision are by either 

removing the debris, forcing it to re-enter the atmosphere and burn up, or by maneuvering 

satellites around debris to avoid it entirely. Additionally, it is important to be able to classify 

objects in orbit to catalogue the type of debris. Classifying debris allows us to better determine 

risk and which method of removal to use. However, both classifying and detecting debris are 

extremely difficult with the current strategies. By using novel machine learning algorithms to 

more efficiently analyze debris classes and orbits, we can vastly improve the performance of 

satellite systems and debris removal protocols. 

Recent studies pertaining to this field suggest trying You Only Look Once (YOLO), a 

new type of machine learning. It is extremely fast at detecting objects and works much more 

efficiently than any previous object detection models, making it more likely that it would work 

on less powerful space hardware. Our goal was to find how effective YOLO is at classifying 

debris in LEO. 

Our solution was to create a simulation which can test YOLO’s ability to classify debris. 

To do so, we generated over 14,000 orbits containing information such as position versus time. 

With this information, we created a graphical simulation of the debris orbiting Earth. Then, we 

procedurally took screenshots of the simulation and saved object classes and positions to a file. 

After slight adjustment, the images were fed into the YOLO program for training, and once it 

was fully trained we fed the simulation directly into the model to see how it would perform in a 

real-time environment as opposed to still pictures. 

The program finished its training with a very high percentage accuracy of classification. 

The program had minimal difference between the different types of background in the images. 

Our results support the conclusion that YOLO can classify debris accurately and can be 

implemented for the purpose of addressing free floating debris in space. We encourage future 

researchers to continue this course of study for possible space implantation. 
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Introduction 

The Problem 

In the past few decades, society has grown to rely on wireless internet, smart phones, and 

instantaneous communication networks. Many of these commodities, however, rely on satellite 

technology. With most of the modern world dependent on satellites in some way, it is important 

to address problems that threaten their existence. By far the largest one is debris; these pieces of 

residual payloads, broken satellite parts, and asteroids have begun 

to litter Earth’s orbit on an unprecedented scale. As more satellites 

are put in space, more debris is created: more payloads are left 

over, and more old satellites are forgotten and broken down. A 

piece of debris can reach a speed of 18,000 miles per hour, seven 

times faster than the speed of a bullet. At that velocity, even a 

collision between a flake of paint and a satellite could prove 

catastrophic. The image to the left demonstrates the proportion size 

between a piece of debris in Low Earth Orbit and its collision impact crater. A single collision 

could easily decommission a satellite, as well as create more debris to worsen the problem. 

Repairing damaged satellites costs tens of billions to hundreds of millions  of dollars, especially 

if it requires a human mission. Leaving them vulnerable jeopardizes every function they perform, 

is a danger to society's way of life, and makes sustainability in space very precarious.  

Current methods to detect debris are radar systems which can pinpoint locations of 

nearby objects as well as contact with a ground-based tracking system with more heavy-duty 

tools. Neither of these methods can directly determine what exactly the debris is but can collect 

information such as material. However, in some cases this may not be enough to fully classify 

the debris, and in the case of ground-based tracking it has a delay between data transfers and can 

also be very expensive to operate the ground-based tracking systems. Another, newer option is to 

stream images down from the satellite and perform object detection algorithms on earth. 

However, streaming such a large amount of data from a satellite would be very expensive and 

would have a large enough delay for the data to be outdated when it reaches the 

satellite—remember, debris can move at up to 18,000 miles per hour. 

Without information about the debris near a satellite in real time, there is little we can do 

to reduce collisions. Solutions such as removing the debris, forcing their orbit to burn on reentry, 
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or having satellites maneuver around debris would all require information about the class and 

location of the debris that would be necessary in order to determine which approach to use. 

Clearly, another method is necessary to accurately and completely classify and detect debris with 

attention to both cost and speed. 

 

The Objective 

Our proposed solution is to find a way of detecting and classifying pieces of debris with a 

common type of artificial neural network: YOLO. First introduced by Joseph Redmon et al. in 

2015, it is a quick and efficient object detection neural network. It has never been implemented 

in space before but has been proposed for being more effective than current methods of detection 

according to studies by Mahendrakar et al. and Ahamed et al. However, no previous studies have 

suggested any ability of YOLO’s classification skills in space. 

Classification of debris could help us understand the risk of each piece of debris, provide 

information on the best way of removal, and gauge whether the debris would burn up in the 

atmosphere during reentry. Providing this information would be valuable for addressing the 

debris problem and is an area that has not yet been explored in YOLO’s abilities, thus addressing 

a gap in scientific understanding. 

YOLO sets itself apart from many other machine learning algorithms because it is the 

most likely object detection model to work on current satellite hardware because of its speed and 

relatively low resource requirements. Realistically, a surveying satellite does not have the time to 

be able to detect and classify every object it sees. Instead, it has to be able to process the required 

information before the object disappears. Speedy calculations will lead to a more efficient system 

of surveying and give the satellite a greater amount of time to act and attempt to remove or avoid 

the debris. Because LEO has the highest concentration of debris, our simulations have been 

based on receiving its data from this altitude (2,000km or less). At the conclusion of this study, 

our results should show how effective YOLO is at detecting and classifying debris in 7 classes: 

Asteroid, Cube Satellite, Envisat, Voyager, Hubble, the ISS, and the SaturnV5 Rocket. These 

classes include common objects seen in space along with specific, universally recognised objects 

that would demonstrate YOLO’s ability to classify different types of objects such as Envisat, 

Voyager etc.  
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By separating the project into two sections: generating the debris orbits, and creating and 

training the YOLO program. We generated the debris orbits based on a dataset of real debris 

orbits, which output individual characteristics of around 

14,000 orbits and saved each orbit to a file. These 

generated files, containing the position versus time of 

each item of debris, were then converted into a real-time 

graphical simulation of the debris, as shown in the image 

to the left. The graphical simulation was adjusted to 

demonstrate the vantage point of a LEO satellite. 

Screenshots of the simulation from this vantage point were fed into the YOLO model for 

training. Afterward, the YOLO was able to receive information live from the generated debris 

visualization. 

 

 

 

Solution 

Orbit Generation 

The debris orbits were generated 

from a dataset obtained from Kaggle. The 

dataset quantified one debris item per line 

summing to a total of around 14,000 pieces 

of tracked debris and 14,000 lines of data. 

To describe each orbit, the dataset gave over 

20 Kepler's characteristics along with name, 

ID, country of origin, and date of creation 

using a Comma Separated Value(CSV) file. 

As the information may suggest, the debris 

information was recorded from real debris in 

space and does not contain randomly 

generated numbers.  

 

Kepler characteristics are values that 

describe an orbit in a way that allows us to 

derive specific information about its path. 

For example, a characteristic could include 

an object's closest and farthest point radius, 

eccentricity, inclination off the xy plane and 

‘w’ rotation away from the zy plane. Using 
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these values, the radius of the debris from 

earth are given by      where 𝑅 = 𝐴* (1−𝑒2)
1+𝑒*𝑐𝑜𝑠(𝑉)

‘A’ is the semi major axis, ‘e’ is the 

eccentricity, and ‘V’ is the true anomaly 

(angle from ). A python program θ = 0

input the required values and calculated the 

radius based on incrementing calculating θ,  

one full orbit at 

     

a time. This provided a basic outline of the 

orbit’s position over an orbit. It was then 

rotated off  the xy, yz, and zx axis based on 

the ‘w,’ ‘i,’ and the RA node. The rotation 

matrix used for adjusting the orbits is given 

by  

  . This translates the 𝑅   =  
𝑠𝑖𝑛θ   𝑐𝑜𝑠θ
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ⎡⎢⎣

⎤⎥⎦
Kaggle orbits into the 3D path of the orbit.  

After the piece of debris’ actual path 

through space has been found, the time steps 

need to be calculated. To do this, we used 

the conservation of momentum,  to 𝑃 = 𝑚𝑣

find the time between each calculated 

position. The velocity was calculated by 

subtracting the potential energy from the 

total energy and solving for ‘v’. The 

equation for total energy is given by 

 , the potential energy at 𝐸
𝑡𝑜𝑡𝑎𝑙

=− 𝐺𝑀𝑚
2𝐴

the time of measurement is , 𝑈 =− 𝐺𝑀𝑚
𝑟

and the Kinetic energy is given by 

 Using pythagorean theorem, 𝐾 =  1
2 𝑚𝑣2.

we calculated the distance between the said 

measurement and used  to find ∆𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑣

the time. At the completion of finding each 

time step, the information was saved to a 

CSV file for further use. It is saved to the 

format time since the start of orbit, x, y, z. 

The python program repeated the process for 

the rest of the debris, reading one more line 

of the dataset and creating another debris 

CSV file until every debris file was made. 

 

Orbit Visualization 

The Setup 

 Each individual orbit is saved to a 

CSV file, with each line containing 

information about the x, y, and z coordinates 

of the debris along with the time. There are 

14,372 debris orbits in total, with two extra  

files for the orbits of the Earth and moon. 

The Sun orbits around the Earth for the sake 

of not having to deal with massive 
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floating-point numbers causing precision 

loss on satellite positions. Instead of a full 

orbit it changes between 8 approximation 

positions in a circle around the Earth. The 

Earth also rotates around its axis on a 

24-hour time interval. To keep the sun and 

earth’s rotations synced up with the debris’ 

timescale, they use one of the orbit files to 

determine the timescale being used, and then 

take reference to the timestep while using 

their own logic for positioning. Below is 

what our simulation currently looks like. 

The sun is not directly seen by the satellite 

at its current angle, but it helps simulate the 

day/night cycle. 

 

For convenience, the simulation is 

sped up significantly, and the xyz 

coordinates of every orbit are decreased by a 

scale of 256. This scaling down is necessary 

because with 3D simulations such as Unity, 

as a number gets larger the amount of 

floating-point precision a number can hold 

decreases. By scaling down the number we 

get more decimal precision, and it is easier 

to move around the environment during 

testing. The earth and moon are scaled down 

in size to match the coordinate shrinking, so 

the simulation is an overall 1/256 scale 

model of the Earth-Moon-Sun system. 

 At runtime, a debris generator object 

instantiates all 14,372 pieces of debris with 

one of seven random debris models. Each 

piece of debris is instantiated at a random 

angle as well. The camera is attached to a 

survey satellite in the same orbit zone as the 

debris, and pointed directly towards the 

Earth. The debris are scaled up to 100 times 

their real world sizes to make it easier for 

the low resolution images we are training 

the neural network with to actually capture 

the 3D models. This would not be as much 

of a problem in a real-world situation 

because the camera would take higher 

resolution images that could capture 

important features from further away. 

 

Optimization 

 14,372 pieces of debris is a lot to 

simulate individually. Each piece must 

update its position in almost every frame 

and has a fairly dense 3D model attached to 

it which also uses a significant amount of 

computing power. On a RTX 3060 graphics 

card and an intel i9 cpu, the simulation runs 

at under 10 Frames Per Second(FPS) 

without optimization. The simulation is 
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intended to run alongside a neural network 

and must run at or near “real-time” (30-60 

FPS) to be viable. 

 To optimize the simulation without 

compromising on the amount of debris, 

everything the camera can’t see doesn’t need 

to be fully simulated. We can do this by 

checking if a debris item is past a certain 

distance from the camera, and if it is we turn 

its model off. By running this every time 

when a piece of debris moves, we create a 

“mask” around the camera where things are 

visible, and hide everything else. 

 

This saves some computational 

power, but not enough to get a “real time” 

frame rate. The main thing causing FPS to 

drop is the number of times each debris item 

changes position. Every piece of debris 

updated its position every few milliseconds 

or so. This meant the CPU was always 

swamped with requests, making each frame 

take longer to process. To fix this, we again 

use the principle of not spending resources 

on debris the camera cannot see. To do this, 

we again need to know how far the debris is 

from the camera. First, we have a script on 

the debris that calculates each time it moves 

how far away it is from the camera. Then, 

we calculate an “optimization number”-a 

number that the debris’ delta time and lines 

skipped will be multiplied by, making its 

motion choppier (but still following the 

same path at roughly the same time) and less 

computationally expensive. After trying a 

few different methods, we settled on taking 

‘e’ (Euler’s number) to the power of the 

distance minus the radius around the camera 

that we want the debris moving smoothly in 

with a minimum value of one and a 

maximum value of 45, rounded to the 

nearest integer. Using this function means 

we get a tight sphere around the camera 

where everything moves smoothly, but after 

that point the debris gets optimized quickly 

(but not so much that the orbit becomes 

completely unusable). By doing this, the 

simulation can now run all 14,372 pieces of 

debris simultaneously with a range of FPS 

between 30-60. Another thing to note is that 

the simulation is rendered at a resolution of 

256x256, for two reasons: One reason is that 

it makes the simulation run faster, and the 

second reason is that it makes the neural 

network faster to train and run. In a 

real-world scenario the resolution would 



10 

need to be much larger than this, so there 

would be some necessary loss in 

performance past what we use in this project 

in order to make the model work better in 

space. 

 

Dataset Generation 

 With the simulation complete, the 

dataset for the object detection model could 

be generated. This is relatively easy with 

Unity’s built in GUI functions: existing 

functions can detect which objects are on 

screen and where they are on screen (this 

does not use machine learning, as Unity has 

access to the 3D simulation and can figure 

all of this out deterministically). We used 

more GUI functions to draw the rectangles 

on screen as a sanity check for the boxes 

before we screenshot each frame of the 

simulation and write the important 

information such as class and bounding box 

of each object to another CSV file (YOLO 

uses the format center x, center y, width and 

height for its bounding boxes). Below is an 

example of one of these boxes and the sanity 

check: 

 

For the most part this gives relatively 

good bounding boxes to use in training the 

neural network. This code runs until each 

object class has a certain number of 

screenshots with it in the picture. We 

generated 100 images per class as this is the 

recommended minimum for such a model.  

However, the format of the dataset 

cannot be used with YOLO out of the box: 

the standard format for YOLO requires a 

multitude of text files containing object 

information with one text file per image 

rather than a CSV file with every image’s 

data in it. We made this transition with a 

single python script. We also divided each 

value for the bounding box by the resolution 

of 256 by 256 since YOLO works off of 

screen ratio rather than pixels, and changed 

the definition of the Y value on the image 

from starting at the bottom, as Unity has it, 

to starting at the top. After everything was in 

the proper format, the YOLO object 

detection model could be trained. 

 

Object Detection 

The Structure of YOLO 

 YOLO stands for You Only Look 

Once, and it is currently the most popular 
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neural network for object detection. There 

are many different versions of YOLO, 

ranging from the original YOLO to the most 

recent YOLOv12 model. During this 

challenge, we focused on YOLOv4 but 

eventually switched to YOLOv5 after we 

ran into a critical bug in our v4 code that 

required us to switch over to v5 just in case 

we couldn’t solve the bug in time. 

 YOLO’s structure consists of three 

parts: a backbone, a neck, and a head. The 

backbone is a convolutional neural network 

for object classification, and is the part that 

actually determines what objects are in the 

scene as well as a great deal of where they 

are. A convolutional neural network 

classifies objects using convolutional layers, 

which extract various “features”, such as 

closed circles or even something as 

complicated as the contours of a face. Below 

is an example of what these features and 

feature extractors look like if visualized. 

 

Typically, convolutional neural networks are 

used to identify a single object in a picture 

as a standalone neural network, but YOLO 

modifies the network by essentially splitting 

the given image into a grid that the 

backbone classifies individually. This gives 

the neck and head a starting approximation 

of where each object is as well as what the 

objects are. This is the largest part of the 

neural network, and does most of the heavy 

lifting. 

 The neck is relatively small 

compared to the backbone and head, but 

serves as an important bridge of information 

between the two. This section collects the 

features that were extracted from the image 

during the backbone section and sends this 

information to the head. This is commonly 

done with a Feature Pyramid Network 

(FPN), which can aggregate features on 

several layers of the backbone at different 

scales (convolutional layers shrink the 

image’s dimensions, creating vastly different 

sizes of features). By feeding accurate data 

into the head, the head works better and can 

draw more accurate boxes. 

 The head is where most of the output 

of the neural network is put together. The 

head takes the output from the neck and runs 

it through a series of “YOLO layers” which 

generate thousands of boxes. Each box has 

its own confidence value representing how 

confident YOLO is that there is an object in 

the box and class prediction. The class 
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prediction is a list of confidence values 

where the index of the highest value in the 

list is the class it believes is in the box. 

(Object types during computation are 

represented by numbers.) YOLO outputs a 

list of three separate tensors with these 

boxes for low, medium, and high box size 

based on the different scales the neck inputs 

to the head. This ensures that regardless of 

an object's proximity to the screen or 

relative size, the neural network can still 

pick up on it. 

 However, YOLO’s output is 

completely unfiltered and outputs thousands 

of boxes that need to be sorted through to 

find the best ones. This is done by the 

second step of the algorithm, which is 

separate from the neural network and 

deterministically culls the low-confidence 

boxes so that only the most accurate ones 

remain. This turns thousands of useless 

boxes into a select few usable boxes that are 

much closer to the actual object’s position 

and class. 

 

Attempts at Making a Custom Network 

 Our original idea was to make a 

custom implementation of YOLO based on 

researcher Wong Kin-Yiu’s Github 

repository demonstrating YOLOv4’s 

architecture in Pytorch. We coded this 

implementation with a dataloader that would 

have taken our original CSV file dataset 

format, along with a more specialized 

structure for our specific needs. The bulk of 

the code was finished in late February, but 

when we tried to train the model, the loss of 

box accuracy plateaued at 0.3 (a very high 

number) and the output was completely 

unusable. Unfortunately, attempts to fix this 

issue didn’t look promising, and after a 

month of bug fixing we decided to switch to 

a professional implementation of YOLO and 

continue fixing the problem after we had 

something working. Having to use a version 

of YOLO we didn’t personally program and 

customize was disappointing, but through 

making our own implementation at the start 

we were able to understand the structure of 

the tool on a deeper level than if we had 

started out with a premade model. 

 

Training YOLOv5 Instead 

 Since we already had a large amount 

of experience getting our YOLOv4 set up, 

getting YOLOv5 to train on our dataset was 
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simple. We switched the dataset from the 

CSV file to a set of txt files so the dataloader 

could read it, and added a .yaml 

configuration file that would point towards 

our dataset and the number and names of our 

classes. After this, we loaded up a python 

virtual environment to run 100 epochs of the 

YOLOv5 nano model, which is the smallest 

version of YOLO that is typically used. We 

chose this version because it has the best 

chance of running on current space 

technology, while also being accurate 

enough to pick up on all of the features it 

needs to pick up. 

 

 As seen above in one of the output 

testing images, the model draws boxes over 

each piece of debris it detects along with the 

class it believes the object is. After it was 

trained, we ran the neural network 

simultaneously with the graphical simulation  

and visualized the output much like the 

above image. This worked extremely well, 

even when the camera was looking at a 

darker image like when it was nighttime. To 

improve accuracy at a marginal increase of 

computational stress, we could increase the 

resolution and the number of classes. 

However, we have not given up on fixing 

YOLOv4. We will continue work on it after 

the report is finished and try to get it fixed 

for the expo. 

 

Results 

YOLOv5 ended its training with a 

box loss of 0.278, an object loss of 0.016, 

and a class loss of 0.007. Its ending 

precision was slightly under 94%. If 

necessary or if we wanted to add more 

classes, we could train it for longer to get an 

even more accurate model. The “nano” 

model structure didn’t even need two 

computers to run it in real-time as we 

originally planned, and it could run easily 

alongside the real-time graphical simulation 

and a communication script that fed the 

simulation’s window into the neural 

network. Here is the YouTube video that 

demonstrates the simulation and the 

detection side by side: 

https://www.youtube.com/watch?v=W5LQc

zcIe_4. While there is a slight delay in 

https://www.youtube.com/watch?v=W5LQczcIe_4
https://www.youtube.com/watch?v=W5LQczcIe_4
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presentation of the detection boxes and the 

original simulation due to using python as a 

visualizer of the boxes, the detection 

algorithm ran at a much higher framerate 

than the simulation, running at hundreds of 

FPS and drawing accurate boxes around 

debris. Additionally the simulation’s debris 

and angle are randomly generated, so there 

is little overlap between what the neural 

network explicitly trained on and the 

material it was tested on here. The model’s 

high performance in this case indicates that 

the neural network did not overfit while 

training. The neural network was also able 

to perform well during the night, 

demonstrating its ability to accurately 

discern class and box location based on less 

clear information. If required we could 

easily up the image resolution to something 

more accurate for a satellite, as well as 

improve the model from YOLOv5 Nano size 

to small or even medium with a manageable 

tradeoff of speed in return for more 

accuracy. Below is the graph of our loss 

metrics (left) and accuracy (right) during 

training. For a larger version of this graph 

along with other important graphs, see the 

end of this document in the Graphs and 

Tables section. 

 

Conclusion 

YOLO has proven to be an accurate, 

performant way of analyzing and classifying 

space debris. However, it is also rather 

delicate and difficult to get working, and 

there are many edge cases and direct attacks 

that can decrease its accuracy significantly, 

as is the case with many neural networks. 

With our own implementation, programming 

around these issues and getting it running in 

the first place was complicated and required 

us to learn a great deal about neural 

networks, convolutional neural networks, 

and object detection algorithms in general. 

This makes it our most significant 

achievement in the project, even though we 

were unable to get YOLOV4 working in the 

final product. 

 YOLO as a solution to detecting and 

classifying objects in space has some 

downsides. Primarily, it can only classify 

objects it has been explicitly trained on. We 

used only seven classes in our project, but 

there are hundreds, if not thousands of types 

of debris currently in orbit and it would be 

impossible to catalogue them all and train a 
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network on it. Classification needs more 

training the more classes you train on, and 

even though the relatively primitive 

YOLOv2 could hypothetically guess over 

9000 classes relatively accurately (for its 

time), this creates a larger neural network 

that requires more memory and power. 

However, one advantage indicated by 

research is that a larger neural network 

would be more “robust” when exposed to 

radiation than a smaller one, as there would 

be more redundancies and pathways that the 

model could still perform relatively well 

without. 

Additionally, YOLO cannot 

explicitly find the distance to or relative 

position of the debris in 3D space, just 

where it is on the screen (Although this can 

be paired with other algorithms to figure this 

part out). Finally, we once again run into the 

issue of performance: current space 

technology is at least ten years behind 

modern graphics cards and CPUs, and even 

in 2017 the most efficient object detection 

algorithms ran at 6 FPS and were considered 

extremely performant at the time, as seen in 

Tsung-Yei Lin’s paper on feature pyramid 

networks. This is due to radiation being hard 

on modern, fragile graphics cards and frying 

them easily, along with the amount of power 

neural networks use. This is a relatively 

small problem, as even now there is research 

going into getting neural networks such as 

this into space and even some commercially 

available satellite parts that YOLO could 

reasonably run on without too much trouble. 

These weak points are a significant 

concern, but using other technologies in 

combination with object detection can cover 

these weak points and result in a much more 

accurate debris detection system than we 

currently have. In particular, a supporting 

onboard radar system would be able to tell 

where exactly the debris is (one of the 

problems with YOLO) as well as provide 

auxiliary information about objects such as 

their material or mass. This last point is 

important because it would let YOLO train 

on fewer, more general classes of objects 

(such as satellite, rocket stage, etc.) but still 

have enough context clues for a 

deterministic algorithm to piece together the 

output of both the radar and YOLO for a 

much more extensive list of detections than 

either one could give alone. 
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Links To Products 

https://github.com/HadwynLink/SCC-2024-2025 

(results table can be found in Yolov5/Runs/results.csv) 

https://www.youtube.com/watch?v=W5LQczcIe_4 
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Graphs and Tables 

Graph of loss and precision during training 
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Confidence Curve 

 
 
Precision-Recall Curve 
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Precision-Confidence Curve 

 
Recall-Confidence Curve 
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