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Background
High-dimensional data is often difficult to analyze because of the expo-

nential growth of the size of the space in which the data lives as the dimension
increases. [1, 2] One example of high-dimensional data comes from language,
which contains many different characteristics (dimensions) with which it can
be quantified, but not always sufficient data to detect patterns in it. This is
especially true for ancient languages where there is a sparsity of texts. [3]

One such ancient language is Etruscan, which was spoken in the Etrurian
region of Italy around 800 BC. With more than 13,000 examples of Etruscan
text, we have enough data to understand a fair amount of vocabulary but
not to concretely determine the origins of the language. [4] Possible families
from which Etruscan originated range from the Tyrsenian group to the Pre-
Indo-European family. [5, 6, 7]

For my project, I will compare the phonology of ancient and contem-
porary Indo-European languages to that of Etruscan using topological data
analysis (TDA), with the aim of discovering which Indo-European languages
are most closely related to Etruscan. Topological data analysis is a method
of analyzing patterns in data using topological structures such as loops and
holes. [8] While statistics aims to fit data points to lines or other geome-
tries, TDA quantifies the distance between each data point in a point cloud.
Previous studies have used TDA in detecting similarities between languages
based on their phonological and syntactical structure. [9, 10] It is known to
perform well in comparison to other techniques because of its insensitivity to
sparsity of data and noise. [9, 10, 11]
Methodology

Following the procedure designed by Wolfram [12], I encode a list of words
translated into Etruscan and each language to which I will compare Etruscan
using their associated International Phonetic Alphabet (IPA) classification.
[13, 14] Each sound in a word is encoded by an IPA character, and the list
of sounds is universal across all languages. For each instance of an IPA
character in a word list, I add the pair of characters that come before and
after it, known as the context, to a list. Thus, each IPA character has a list
of contexts. I quantify the relationship between two IPA characters in the
word list by the cosine similarity C, which is given in Equation 1.
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C =
number of contexts two characters share√

length of first context list ∗
√
length of second context list

(1)

Next I define a coordinate system, where each axis corresponds to a pair of
IPA characters. The position along that axis for a given language is the cosine
similarity between those two IPA characters. Each language is described by
a point in this coordinate system; the closer two points are, the more closely
related their associated languages may be.

Thus far, I have calculated the cosine similarities for a given language;
the code for this can be found in the Appendix. Those values are stored in a
2-dimensional matrix, where each axis is the list of IPA characters, and each
element in the matrix is the cosine similarity for two characters.

Next, I will perform TDA on the cloud of points within the coordinate
system. A simplicial complex, or collection of simplices, is laid over the data
and the persistence of each data point, or the amount of time before a given
data point overlaps with another point as the simplex around it grows, is
calculated (see Figure 1). From there, I can represent the persistence of each
data point using a barcode graph. Similarities in the length of time each
data point persists between different languages imply that those languages
share phonological features and, thus, may be related.
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(a) Step 1: Point cloud
(b) Step 2: Generate circles around
point cloud

(c) Step 3: Grow circles over a period of
time

(d) Step 4: Lay simplicial complex over
point cloud, connecting circles that over-
lap

Figure 1: Process of performing TDA

Next Steps
After calculating the persistence of the point cloud using traditional sim-

plicial complexes, I will attempt to lay a recently-derived geometry over the
point cloud. This geometry was discovered when researchers generalized the
algorithm for generating Reuleaux triangles to higher dimensions. [15, 16]
The Reuleaux triangle has the smallest volume of a shape of constant di-
ameter in two dimensions, meaning that the distance from its center to any
point on the boundary is always constant (see Figure 2). The new algo-
rithm allows one to find constant-diameter shapes in any dimension, and it
also demonstrates that volumes are a factor of 0.9n times the volume of an
equivalent nth dimensional ball. Thus, the Reuleaux construction’s volume
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decreases exponentially as dimension increases. This makes it a potentially
useful simplicial complex in finding relationships between Etruscan and other
languages, where there is a sparsity of data in a high-dimensional data set.

Finally, I will compare results from using traditional simplicial complices
and the higher-dimensional Reuleaux constructions. The ultimate goal is to
discover 1) the significance of similarities between barcode graphs of different
Indo-European languages and Etruscan and 2) the effectiveness of utilizing
Reuleaux constructions in comparison to other simplicial complexes.

Figure 2: An example of a Reuleaux construction in two dimensions [17]
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Appendix
The following code produces a matrix for a sample word list in American

English.
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[1]: import numpy as np

[2]: IPAamericanenglish = " aI, ju, hi, wi, ju, there, this, that, hir, ju, wut,␣
↪wer, wen, hau, nat, el, meni, sam, fju, raIt, left "

[3]: def MatrixMaker(language_list):
#turns string of words into a list
language_list.replace("''"," ")
language_list.replace(","," ")
good_list = list(language_list)

#creates list of letters that appear in word list
LetterList = []
for letter in good_list:

if letter != ',':
if letter != ' ':

if letter not in LetterList:
LetterList.append(letter)

counter0 = 0

#creates numpy array of zeros
arr0 = np.zeros((len(LetterList), len(LetterList)), dtype=object)

for letter1 in LetterList:
CosineSimilarities = []
counter1 = 0
for letter2 in LetterList:

#creates list of letters that come before and after a given letter
#in the word list (called the context of the letter)
Contexts1 = []
Contexts2 = []
for i in range(0, len(good_list)):

if good_list[i] == letter1:
context = [good_list[i-1], good_list[i+1]]
Contexts1.append(context)

if good_list[i] == letter2:
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context = [good_list[i-1], good_list[i+1]]
Contexts2.append(context)

#counts how many pairs of contexts two letters have in common
counter = 0
shared_contexts = []
j_contexts = []
for i in range(0, len(Contexts1)):

for j in range(0, len(Contexts2)):
if Contexts1[i] == Contexts2[j]:

if j_contexts.count(Contexts2[j]) < Contexts2.
↪count(Contexts2[j]):

j_contexts.append(Contexts2[j])
counter += 1

#appends the cosine similarity of two letters
#(how many contexts the letters had in common divided by
#the square of the number of contexts each letter has)
CosineSimilarities.append(counter/((len(Contexts1)**0.

↪5)*(len(Contexts2)**0.5)))

#adds each element of the list of cosine similarities to a matrix
for element in CosineSimilarities:

arr0[counter0][counter1] = element
counter1 += 1

counter0 += 1

return arr0

[ ]: MatrixMaker(IPAamericanenglish)

2


